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Abstract—Remote planetary exploration by autonomous 
vehicles in uncertain environments requires dynamic and 
highly adaptive decision making, behavior, and control 
mechanisms to maximize the chances of successful mission 
completion.  We present in this paper an adaptive 
architecture for cognition, behavior and control of an 
autonomous unmanned aerial vehicle (UAV) Mars explorer 
called the Cognitive Emotion Layer (CEL) architecture that 
uses dynamical emotional response mechanisms to model 
explorer’s response to continuous stimuli and provides 
adaptive decision making and control capabilities for the 
exploration platform. 
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1. INTRODUCTION 

The goal of the Intelligent Aerial Vehicles (IAV) project at 
the NASA Ames Research Center is to investigate and 
develop novel reasoning and control technologies for 
remote planetary aerial exploration and scientific 
investigation.  Aerial explorers enjoy many advantages over 
surface rovers, including a higher degree of mobility, 
instrument access to areas that cannot be traversed on the 
ground, and coverage of a larger area of the planetary 
surface [1][2][3].  Aerial Explorers would potentially be 
deployed in unexplored and largely uncertain environments 
where direct control is infeasible, requiring a high level of 
sophistication in autonomy for decision making and control 
that challenges state of the art techniques. 
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Bio-inspiration can be a powerful tool when applied to 
engineering problems, particularly the development of 
intelligent systems.  In our project, we have applied 
biological inspiration to the development and demonstration 
of Mars-analog missions using terrestrial Unmanned Aerial 
Vehicles (UAVs) [4][6][7].  These missions were derived 
from individual biologically inspired behaviors.  A natural 
progression was to investigate whether biological 
inspiration could lead to architectural or control structural 
definitions that could adaptively combine multiple 
behavioral definitions into a mission. 

Several concepts for biologically inspired architectures were 
investigated, including an approach that combined 
emotional systems with holarchical structures [8].  
Dynamical formulations and a layered emotional 
implementation were developed into a system that allows 
biologically inspired behaviors to be easily described at an 
atomic level.  The combination of these atomic behaviors 
across multiple levels results in complex composite 
behaviors that would be difficult to define individually. The 
Cognitive Emotional Layer (CEL) architecture provides a 
single architecture that encompasses both the ability to 
define and implement high-level adaptive decision making 
as well as the lower-level stability and control of the aerial 
vehicle platform. 

This paper introduces the Cognitive Emotional Layer 
architecture.  We discus its relationship to emotional 
modeling and dynamical systems, provide a rigorous 
mathematical description of the architecture and use, then 
demonstrate how the CEL architecture was used in the 
design and implementation of three intelligent control 
structure applications: an adaptive UAV lateral control 
mechanism, a smart sensor implementation, and persistent 
memory mechanisms using dynamic networks.  It concludes 
with an overview of a full UAV navigation system that is 
currently in development at NASA Ames using the CEL 
architecture and methodology. 
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2. BACKGROUND 

Emotional Modeling and Artificial Intelligence 

There are numerous initiatives to create emotion-based 
intelligent systems in the literature; previous work 
demonstrated the feasibility of emotional controllers for 
higher-level cognition and decision-making, typically 
geared towards emotional behavior and mimicking human 
responses.  Modeling an emotional system for all aspects of 
vehicle control, however, is an approach whose utility and 
implementation feasibility remain to be demonstrated. 

The development of an emotion-based system requires 
formalization of a consistent model for emotions that is 
practical and machine-implementable.  The researcher must 
appreciate the fundamental shortcomings of this endeavor; 
the characterizations will yield a functional description of 
the emotional system, defining and assigning quantifiable 
values to a complex system that is notoriously hard to 
define and near impossible to quantify.  This makes 
argument on the utility of emotion based systems difficult; 
variant and often conflicting classifications, definitions, and 
implementations yield fundamentally different results, and 
aspects of one approach will not necessary be reflected in 
another. 

Despite the fact that many different models for emotional 
simulation have successfully been implemented, there is 
general recognition that biological components and 
mechanisms that evoke emotional reactions in animals to 
environmental and cognitive stimuli are not well understood 
[10].  Further, current capabilities of computers to process 
data might still be well short of that necessary to simulate 
such a complete model.  The best approaches adapt 
cognitive models of emotion from the research in 
neuroscience, physiology, psychology, and even philosophy 
([12]-[19]), capturing or simulating specific classifications 
from those models that emulate the expected behavior 
demonstrated by emotional organisms. 

In one such approach, the OZ project at CMU [13] adds a 
higher-level emotion based cognitive layer (the Em module) 
above an unemotional lower level to close the perceive-
think-react loop.  This model is loosely based on cognitive 
models of humans described in [14].  Ventura [12] contrasts 
this approach of placing a high level emotional layer above 
a lower level unemotional layer with a functional approach 
that is constructed emotion-based throughout.  An example 
of this approach is given in [15], where a society of 
‘emotion proto-specialist’ agents, each associated with a 
particular emotion, contributes to the emergent emotional 
behavior in a particular way. 

In [16], a two-layered system is presented based on a 
dualism found in several theories on human cognition, 
including the Canon-Bard theory and Papez circuit theory 
[10]; the system has two layers for processing stimuli input: 

a slower cognitive processor which extracts cognitive 
features of the stimulus to form a generalized image model 
(for instance, the image of a zebra can be evaluated as an 
animal with four legs attached to a body, stripped coloring, 
etc.), and a perceptual processor for more basic and 
immediate instincts that produce a vector of desirability 
(e.g., a lion’s perception of a zebra triggering its predatory 
instincts).  The generalized image model is a database of 
information that might be rich, structured, divisible, and 
complex.  The vector of desirability contains information 
that is simple, indivisible, and implemented as an ordered 
list of values relating to certain characterizations of the 
object, such as is it positive or negative, desirable or 
avoidable, edible or inedible, etc.  The dual representations 
are used for reasoning purposes, where fast reasoning or 
reflexive actions can use the desirability vector, while 
slower cognition can access the generalized image model.  
A set of complementary mechanisms use data from one 
model to adjust the other. 

McCauley in [17] presents a system based on the 
psychological theory called ‘pandemonium theory’ 
[18][19].  In this system, each emotion is represented by an 
agent called a codelet.  The analogy of an arena is used, 
with stands, a playing field, and sub-arena.  A multitude of 
codelets populate the arena.  Codelets on the playing field 
are active, doing whatever they were designed to do, while 
codelets in the stand watch the activities of the codelets on 
the playing field, waiting for something to excite them.  The 
level of excitation of a codelet in the stand is associated 
with how loud the codelets yell, which also excites other 
codelets.  When excited to a certain level, a codelet will 
activate and move to the playing field to perform its action, 
which will in turn excite other codelets in the stands. 
Codelet actions are linked to other codelets with certain 
gains like links in a neural network.  When entering the 
playing field, the sub-arena creates input and output 
associations between the entering codelet and the currently 
active codelets.  This sub-arena performs the actual input 
and output functions of the system.  The current goal 
context of the system emerges from the active codelets on 
the playing field.  High-level concept codelets may remain 
on the playing field for quite a long time, influencing the 
actions of the whole agent for that time.  Multiple goal 
contexts might be competing or cooperating to accomplish 
their tasks. 

Dynamical Systems Approach 

The conceptual framework used in the research of cognition 
has profound effects on the consequent formulations, 
approaches taken, and, generally, the research performed in 
artificial intelligence.  Recent approaches in the field of 
Cognitive Science have applied dynamical system theoretic 
techniques to model machine cognition that focus on 
dynamical cognitive structures in continuous interaction 
with the environment.  The term dynamical hypothesis has 
been applied to this approach [21][22][23], a companion, 
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arguably, to the traditional computational hypotheses 
paradigm.  Symbolist models are based on the venerable 
presupposition that underlying cognition is the purely 
formal manipulation of quasi-linguistic symbolic 
representation by syntactic rules [1][21].  Connectionist 
models have also gained widespread usage, where control is 
distributed among primitive elements arranged in a network, 
often processed in parallel, where knowledge is distributed 
in the form of patterns of connectivity among the elements.  
The dynamical approach represents a third approach, where 
cognitive agents are modeled as dynamical systems that 
evolve over time governed by nonlinear differential 
equations.  There is a growing number of architectures 
being developed based on a dynamical approaches in the 
literature.  In fact, many of the emotional systems described 
previously implicitly use equations to propagate system 
states that are governed by linear differential equations in 
their derivatives. 

The philosophical similarities, differences, rational, 
advantages, and limitations of dynamical approaches have 
been well addressed in the literature and is a subject of 
ongoing – often spirited – debate [24][25][26][27][28].  The 
authors do not intend to engage this debate here; the merits, 
advantages, and disadvantages of each system have been 
well documented and can be found in the literature.  Rather, 
we present a formal system that is dynamical in nature, and 
describe its successes and limitations.  Although a 
formulation and practical application framework and 
methodology is presented for endowing machines with 
adaptive and continuous behavioral control and evaluate its 
results from an entirely dynamical perspective, the authors 
suggest this kind of framework would find most successful 
application in conjunction with traditional symbolist or 
connectionist models.  Part of the purpose of the CEL 
architecture is to probe dynamical formulations as a basis 
for practical tools in artificial intelligence, evaluating its 
actual strengths in application beyond generalized abstract 
arguments.  Another driving goal in the formulation is to 
establish a strong connection between the dynamical 
hypothesis and the elegant and powerful fields of dynamical 
systems and control systems theory by establishing a 
general mathematical and computational framework 
conducive to traditional methodological analysis; this 
connection - possibly the most vital argument in favor of the 
dynamical hypothesis – provides a science and tools that are 
tested and mature. 

The Cognitive Emotion Layer Architecture 

This paper introduces a software architecture and 
formulation that postulates dynamical structural formulae 
for the creation of composable mental networks for adaptive 
decision making and cognition as well as for low level – 
fast, simple, ‘close to the hardware’ – stability and control 
of the vehicle platform.  This architecture is an attempt to 
extend the formulations of previous emotional software 
systems, providing a link to dynamical system and control 

theory.  For our purposes we define an emotional state in 
very broad terms as a reactive time-varying cognitive 
variable that responds to stimuli and mediates between 
stimulus and a response.  Emotional states are modeled as 
part of transformational networks that are designed to drive 
the system to desirable states.  At the same time, we avoid 
associating this definition of emotion with that of human 
interpreted qualitative states such as happiness, anger, 
hunger, etc.  Rather the emotional mechanisms are designed 
for utility in autonomous exploration without human 
analogue.  The network structures can be tuned to make 
explorers more aggressive in their search patterns, less 
likely to cast doubts on their previously held assumptions of 
the environment, more attuned to perceptual stimuli, or 
place higher weight on ‘introspective’ loops where 
emotional stimuli feedback on themselves.  Higher level 
emotional states are achieved through layering and 
compositing of networks, though the exact nature of these 
states is specific to each system and application, without an 
attempt to force parallels between the machine states and 
subjective high-level human states. 

3. CEL ARCHITECTURE DEFINITIONS 

The Cognitive Emotion Layer architecture provides a 
structure for implementing emotion based reasoning, 
intelligent maneuvering, decision-making, behavior 
selection, and control of autonomous unmanned aerial 
vehicles.  The architecture allows emotional constructs, 
CELs, to be layered to construct cognitive systems.  
Conceptually, as shown in Figure 1, the CEL processor 
hardware transforms stimulus inputs from hardware sensors, 
timers, etc, and produces output for driving the actuators 
and manipulators on the platform. 

Input 
(Sensors, 

Clock, etc.)
Actuators

Environment

External
Stimulus

Output
(Actions)CEL

Internal Stimulus

Vehicle Platform

 
Figure 1 – UAV Hardware Diagram 

A high-level component diagram for a CEL-based cognitive 
system for exploration is shown in Figure 2.  CEL networks 
can be reduced to simple graphs that can then be 
restructured along traditional look-think-act boundaries.  
However, the approach we define for composition and 
layering tends to create components that straddle these 
broad classifications; a responsibility driven interpretation 
of each component is instead offered as a means of 
understanding and designing CEL networks. 
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Figure 2 – CEL Explorer System  

(Classic Look/Think/Act Divisions Shown) 

Emotional vertices, also called codelets for historical 
reasons, are the basic transformation elements in the CEL 
architecture and contain the following properties: 

1. a time-varying input vector u(t)∈ℜm 

2. an internal time-varying state vector x(t)∈ℜn 

3. a time-varying output vector y(t)∈ℜl 

4. internal parameters vector p∈ℜp 

5. a propagation relation τ which defines how the 
four parameters above behave in time 

An emotional vertex can be define as a set V=(u,x,y,p,τ), 
where u∈ℜm, x∈ℜn, y(t)∈ℜl, and τ is the propagation 
relation.  To valuate an emotional vertex is to propagate the 
vertex forward in time by a discrete time step.  The main 
processing step in updating a CEL network is the valuation 
process, where each node in the graph is valuated in a 
certain order that maintains the coherency and consistency 
of the model. 

An edge E=(s,t,w) in an emotional layer network transports 
a value from one vertex to another; edges can be considered 
for computation reasons to be an instance of a vertex E⊂V 
where E=V(s,∅,t,w,τ) where s,t∈ℜ are the tail and head 
variables respectively, w∈ℜ is the edge weight, and 
τ(s,w)=s*w.  We use the operators t[e] and s[e] to return the 
tail and head vertices (t[e],s[e]∈V) of an edge e. 

A cognitive emotional layer is a sub-network of a 
complete cognitive network, defined as a set of vertices and 
edges L=(V,E).  Note that L is not necessarily a graph, in 
that for e∈E[L], where E[L]=E, there is no guarantee that 
s[e],t[e]∈V[L], where V[L]=V.  The edge-in set I[l] of a 
layer l∈L is defined as the set of edges where 
I[l]≡{e:s[e]∉V[l], t[e]∈V[l] ∀e∈E}, or the set of all edges 
that point to vertices in a layer l that started from vertices 
outside of that layer.  The edge out-set O[l] of a layer l∈L 
is similarly defined as O[l]≡{e:s[e]∈V[l], t[e]∉V[l] 

∀e∈E[S]}, or the set of all edges that start from vertices 
inside of the layer and point to vertices out of the layer. 

If a layer l∈L contains a non-empty I[l] or O[l] set, the 
network is considered to be incomplete and is not 
instantiable due to the lack of connections.  However, 
tuning large networks with multiple interdependent 
variables is often difficult, so layers are often instantiated 
independent of a full cognitive network in order to analyze 
and tested the independent function of the sub-system under 
controlled input/output conditions.  The incomplete layer 
can be completed independently by creating support layers 
and nodes to terminate the edges in I[l] or O[l], creating an 
instantiable and complete system for debugging and tuning 
purposes. 

A composition is defined as set of layers C=(L0, L1, … ) 
where any edge e∈E[C], E[C]={E[L0],E[L1],…}, has 
endpoint vertices s[e] and t[e] that may not be an element of 
V[C]={V[L0],V[L1],…}; i.e., like layers, compositions can 
be incomplete. 

A useful approach to formulating complete CEL networks is 
to pose the problem as a search problem with an initially 
empty composition, and a complete CEL system is 
constructed by compositing, or growing the composition 
set C with the addition of layers, until a final goal state is 
achieved.  In fact, this formulated compositing problem 
can allow systems to self-assemble a particular network 
solution using classic strategies such as A* or genetic 
algorithms. 

A CEL System is a complete network composition of CEL 
sub-networks, and defined as S=(L0, L1, … ).  Here, 
complete means edges in a system reference vertices 
contained within one of the Li layers of the system.  Let 
E[S]=(E[L0]∪E[L1]∪…), and V[S]=(V[L0]∪V[L1]∪…).  
Then a CEL system S is a complete composition, where for 
any e∈E[S], (s[e],t[e])∈V[S]. A CEL system is a graph, and 
is given as G[S]=(V[S],E[S]). 

Consider a complete CEL system S. The influence graph 
of a vertex v∈V[S] is the subgraph of S that contains all 
edges and vertices that are involved in the valuation of v.  
Let V’={u∈V[S]:∃u~v}, then the influence graph of the 
vertex v, H[v], is defined as the subgraph of G[S] induced 
by V’, or H[v]={V’,E’} where E’={(u,v)∈E[S]:u,v∈V’ 
and w[(u,v)]≠0}.  Example influence graphs are shown in 
Figure 3.  An influence graph H[v] may by acyclic, cyclic 
where a cycle includes the vector v, or cyclic where v is not 
contained in a cycle. For any vertex v, H[v] has the 
following properties: 

(1) H[v] is unique 

(2) H[v] is a subgraph (inclusive) of the complete 
component of G[S] that contains v 
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V
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V V

Perception Layer

(a) (b) (c)  
Figure 3 - Influence Graphs of Vertex V 
(a) Acyclic Influence Graph, (b) Cyclic, (c) Cyclic in V 

Influence graphs are used for analysis of network behavior 
by defining subgraphs that capture how a disturbance 
propagates through the system, a first step in pruning the 
unimportant information when tracing behavior in a system. 
 Influence graphs also are used when determining node 
ordering for processing during the vertex valuation process. 

Vertex Types and Classes 

Much of the promise of this architecture is ability to create 
reusable emotion vertex definitions that can be used as 
primitives to facilitate design and implementation of new 
CEL networks, as well as the ability to design reusable sub-
networks that can be composited to form networks that are 
more capable and complex. The definition of the emotional 
vertex given is very broad, generically encompassing a 
large class of possible transformations. The following 
vertex classifications and definitions were created to 
provide a concrete set of reusable primitives in creating 
CEL networks.  Many of these definitions are similar to the 
primitive definitions for emotional systems in the literature; 
however, the formulations given here tend towards using 
differential equations to define state variable behavior as 
opposed to explicit relationships defining system state 
behavior over time. 

An analytical node is a simple processing node that 
performs analytical transformations of the raw data.  Many 
of the CEL systems the authors have developed contain an 
analytical layer; a CEL layer that processes and filters the 
raw sensor data into more usable signals for other layers.  
Analytical nodes include nodes such as Kalman filters and 
feedback controllers. 

The following definition defines a class of analytical nodes 
that acts as a proportional-integral-differential (PID) 
controller vertex for use in networks were an error signal 
can be minimized through PID feedback.  The PID codelet’s 
input vector uPID=[e e0]T has two elements: an error signal 
input e and the desired error e0.  The propagation function 
τPID is given by 

 ( ) ( ) ( )uuuu ekekekt dt
d

d

t

ippid ++= ∫0),(τ   (1) 

where e(u)=u2-u1.  In the CEL library’s particular 
implementation, the PID vertex contains the state vector 
xpid=[istate,elast], where istate is the current integrator error 
term, and elast is the  the previous error value at the last 

discrete time step (for first-order derivative approximation). 
The output vector y∈ℜ is the output of the PID controller.  
The class of PID vertices is defined as 

 [ ]( )piddippidpidpidpid kkkyxuV τ,,,,,,=  (2) 

Anxiety nodes are a classification of vertices where a 
particular value or set of values in the output or internal 
state are identified as anxiety parameters.  The purpose of 
anxiety nodes is to process stimuli into an anxiety value 
representing an emotional attraction or dissatisfaction with 
the current explorer state.  An outlet behavior control must 
be defined in the network or in the anxiety node itself; an 
outlet behavior control is a mechanism designed into the 
network which identifies a set of variables through which 
the anxiety values are controllable. 

A concern node is an instance of an anxiety node 
Vc=(u,∅,y,{k1,k2},τ) where u,y,k1,k2∈ℜ and the anxiety 
parameter’s behavior is governed by a first-order nonlinear 
differential equation of the form 

 uykuk
dt
dy

21 +=  (3) 

Concern nodes are used to filter raw data signals into a 
continuous and differentiable form, or to accumulate signals 
into a signal parameter that often represents the ‘concern’ 
the system has some target phenomena.  For instance, a 
concern node is defined to compute a single ‘fuel usage 
concern’ value that grows and shrinks as a function of the 
fuel consumption rate and battery power level rate of 
decline.  

A desire node { }( )τ,,,,,, 321 kkkyyuc &=V  is an instance of 
an anxiety node where 321 ,,,,, kkkyyu & ∈ℜ and the anxiety 
parameter’s behavior is governed by a second-order linear 
differential equation of the form 

 uk
dt
dyk

dt
ydk =++ 322

2

1  (4) 

Desire nodes are used to model desires and preferences, 
where ‘forcing’ variables, often the output of concern 
nodes, provide positive or negative influences on the desire. 
 Desire nodes often are used for selection between a set of 
possible items, such as selecting a particular behavior, 
where each desire node in the selection represents a 
preference for the associated behavior.  These nodes are 
often grouped into a normalized desire group, where the 
desire anxiety parameters are constrained so that the sum of 
the squares of the values is constant.  This constraint adds 
non-linearity to the node’s behavior. 



 6

4. LATERAL NAVIGATION SYSTEM DESIGN 

The CEL architecture definitions were used to implement 
control structures that performed a number of low-level 
behaviors and would adaptively combine the behaviors in 
response to stimulus that sensors received from the 
environment.  This section describes the basic approach for 
developing a system in the CEL architecture through a 
simple lateral navigation system example; this example 
includes definitions of atomic components used in the full 
autonomous navigation system currently in development at 
NASA Ames. 

Terrain Avoidance Anxiety 

The intelligent exploration of remote planetary surfaces 
such as Mars requires some heuristic be identified to help 
reduce total search space and enable the explorer to make 
more intelligent decisions during a mission.  Consider 
exploration over a 2-dimensional landscape (the 
workspace), ignoring altitude, and searching for multiple 
discrete targets.  Let a 2-dimensional continuously 
differentiable potential field be mapped onto the workspace 
which represents areas of expected probability that the goals 
may or may not be located in this region.  This could be a 
search, for instance, for minerals expected to be found in a 
dried out riverbed, and the probability mapping is the actual 
terrain elevation.  The heuristic dictates that the mineral is 
more likely to be found at lower elevations (the riverbeds) 
than higher elevations. 

In the emotional CEL network, the continuous input of this 
probability can be regarded as negative stimulus into a 
perceptual sub-network dedicated to processing this 
topology.  We design a network where this processed 
stimulus gets passed into a reflexive sub-network that 
implements the searching behavior, and a slower deliberate 
cognitive layer that makes higher level decisions.  The 
reflexive emotional network will be responsible for 
implementing a behavior that will follow this heuristic.  The 
cognitive network will be responsible for making higher 
level decisions about the quality and applicability of this 
heuristic. 

Constructing complete systems in the CEL system can be 
accomplished using the following iterative process for 
designing new behaviors into a network: 

(1) Define the new behavior. 

(2) Identify design points for the system and diagram 
desired system behaviors and behavioral interactions. 

(3) Design the network components to achieve the desired 
behaviors. 

(4) Analyze the system to determine appropriate gain and 
parameter settings. 

(5) Iterate for each additional behavior (repeat steps 1-4). 

(6) Integrate into the system composition. 

(7) Analyze paths in the graph through influence graphs 
and simplifying assumptions to eliminate edges to 
determine appropriate gain and parameters settings. 

This process is used the following sections for each of the 
designs.  The first step is to define the behavior, identify 
internal state variables and their desired classification (such 
as anxiety, desire, etc.), and then to design outlet behaviors, 
which are mechanisms that provide some way of controlling 
the internal states through behavior selection.  A single 
‘terrain anxiety’ node in the reflexive sub-network layer can 
do both, where anxiety increases as terrain increases and 
probability of finding targets decrease, and the behavioral 
outlet will be a simple greedy steepest descent strategy as a 
control mechanism for anxiety reduction. 

The terrain anxiety node Vta will compute a desired course 
that will attempt to follow terrain depressions.  The desired 
heading can feed into a traditional autopilot system, or in 
this case, an emotional reflexive layer component.  Consider 
the explorer in Figure 4 at position P=(xp,yp) with a heading 
ψp. Let the elevation of the ground be given by h(x,y) where 
h is continuous and differentiable, let the gradient vector be 
S(P)=(δh/δxp,δh/δyp)|xp,yp. 

ψP

(dh/dx, dh/dy)
(xP,yP)

ψcommand(dh/dx,dh/dy)

 
Figure 4.  Terrain Anxiety 

Let the input vector for the terrain anxiety emotional vertex 
be given by uta=[S P h]T.  The output vector yta=[A, ψta], 
where A is the anxiety magnitude, and ψta is the direction 
that will decrease the anxiety. The heading command ψta 
can be simply computed as the steepest gradient direction, 
ψta=atan2(||S(P)||x,||S(P)||y), where ||S(P)||x and ||S(P)||y 
represent the first and second element of the normalized 2D 
slope vector, respectively, and atan2 is the quadrant-aware 
arctan function.  The intensity of the anxiety will increase as 
a linear combination of the gradient magnitude and the 
altitude, or A=CAP01(k1h+k2|S(P)|).  The function 
CAP01(y) will return 0 if y<0, else 1 if y>1, else y.  Then 
the propagation function is given by 

 ( )
( ) ( )( )⎥⎥⎦

⎤

⎢
⎢
⎣

⎡ +
=

yx
ta PSPS ,atan2

S(P)khkCAP01 21τ  (5) 
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The constants k1 and k2 will depend on the units used and 
how much influence the size of the slope and the altitude of 
the terrain have on the overall vertex anxiety intensity.  Let 
pta={k1,k2}.  Then the terrain avoidance anxiety can be 
given as 

 vta={uta, ∅, yta, pta={K1,K2}, τta) (6) 

Track to Waypoint Anxiety 

Consider an aircraft tracking from waypoint A to waypoint 
B as shown in Figure 5.  An anxiety node vwp will be 
formulated that will take this input and compute a desired 
heading angle.  The node’s anxiety parameter will increase 
as a function of the cross-track error.  The output vector for 
this node is ywp=[ψ,A]. 

v
A

B

s

ex

ex

v

A ψcommand

A
B
s

(xp,yp)

 
Figure 5.  Waypoint Following Anxiety 

Let A and B be the start and end points of the path, and P be 

the location of the aircraft.  Let ABs = , and the tangent 

vector ŝ  from the point P to the line AB be given by 

 ( ) ABPBAB ××=ŝ  (7) 

 ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
⋅×
⋅×−

=
xz

yz

ABPBAB
ABPBAB

ŝ  (8) 

The (positive) cross-track error from the vehicle’s position 
to the track-to line AB is given by 

 ŝ⋅= PBex  (9) 

The cross-track error ex is fed through a PID transformation 
block we will build into this anxiety node to determine a 
heading angle to take towards the track waypoint, as shown 
in Figure 6, where k1, k2, and k3 are the PID gains. 
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Figure 6 - PID Transfer Function 

The output signal from the PID block, t, is capped from 0 to 
1, and used to compute a desired heading vector v and the 
commanded heading ψc, defining τwp. 

 ( ) ssv )1(ˆ tt −+=  (10) 

 ψc =atan2(vy, vx ) (11) 

The anxiety parameter A will increase proportional to the 
distance between the aircraft and the track from waypoint A 
to B. 

 A = CAP01( k4*eX ) (12) 

Here, CAP01 is defined as before, and k1 is a user defined 
gain.  The vertex’s internal parameter vector is 
pwp={k1,k2,k3,k4}. The waypoint following anxiety vertex is 
then defined as 

 vwp = { uwp, xwp, ywp, pwp, τwp} (13) 

Lateral Waypoint Navigation Layer  

The PID vertex in Equation (2) is used prominently in 
reflexive autopilot sub-networks.  The sub-network shown 
in Figure 7 is a simple lateral mode controller to command 
aileron deflection based on course heading error input 
signal. 

L ψcom

Vr2a PID Node:
Roll Error to Aileron

Output

Heading 
Command

eψc

eφc

Roll Angle

Heading 
Angle

Vh2r PID Node:
Heading Error to 

Roll Angle
eψ

eφ

 

Figure 7 - Lateral Heading Command Network 

This lateral heading command layer is defined as 
L ψcom=(Vψcom,Eψcom), where Vψcom={vh2r, vr2a} 
contains two PID vertices vh2r,vr2a∈Vpid. The edge set 
Eψcom={eφ,eφc,eψ,eψc} contains edges eφ=(φ,u1[vr2a],1), 
eφc=(y[vh2r],u2[vr2a],1), eψc=(ψc,u2[vh2r],1), and 
eψ=(ψ,u1[vh2r],1), where φ, ψ, and ψc are vertices external 
to Lψcom. 

Parameters in the PID vertices are a function of the vehicle 
platform’s dynamics and are implemented as a function of 
the flight condition.  In this case, the PID gains in p[vh2r] 
and p[vr2a] can be tuned for a vehicle in isolation by 
classical control system design techniques.  Further this 
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simple sub-network can be tested by instantiating the layer 
as a complete CEL system; this entails adding in perceptual 
and actuation layers, creating input and output vertices in 
these layers, and connected the three layers with edges 
between the appropriate vertices.  This gives a component-
wise method for creating and tuning simple sub-networks 
that will be composited into larger and more complex 
systems. 

Lateral Mode Behavior Selection Composition 

Reusable layer definitions like Lψcom can be composited to 
form more complex network structures.  In Figure 8 a 
composition CLB is shown.  This is a step towards the 
complete system in Figure 2. 

Lateral Behavior Composition CLB

LBehavior

Vta

Vwa

ψc

ψc

e1

e2

Σ

Lψcom

Inputs

Waypoints

Terrain-
Elevation

Aircraft State

…

Input

Input

Output
ψc

In
pu

t

 
Figure 8 - Lateral Mode Behavior Composition 

The behavior layer manages two anxiety nodes, vwp (13) 
and vta (6).  The blending between these two behaviors is 
specified by the edge weights on edges e1 and e2; an implicit 
constraint is 

 w[e1]+w[e2]=1 (14) 

The node labeled ‘Σ’ is a summation block that provides an 
output variable for other layers- in this case, Lψcom, and the 
set of vertices in Lbehavior are Vb={vwa,vta,Σ}, and the edge 
set is Eb={e1,e2,…}, where the ellipses represent the implicit 
edges leading into Vwa and Vta from nodes external to 
Lbehavior (similar to Lψcom in Figure 7). The composition and 
behavior layers are defined as 

 CLB=(Lbehavior, Lψcom) (15) 

 Lbehavior=(Vb,Eb) (16) 

The edge weights w[e1] and w[e2] represent the balance 
between the desire to follow a waypoint and the desire to 
migrate towards lower terrain.  This incomplete 

composition will composited with a higher level cognitive 
layer that will use these weights as control inputs. 

Simulation Results 

The CEL architecture formulation allows for layers to be 
created and tested independently, avoiding the problems of 
gain tuning in complex network structures with hundreds of 
interdependent parameters.  By itself, the CLB composition 
is a simple waypoint controller that is linearly combined 
with a steepest descent algorithm, but independently 
completing simple sub-networks is an important step for 
tuning parameters in a manageable manner.  CLB was 
completed independently and instantiated in a computer 
simulation of a Mars-class unmanned aerial vehicle 
explorer.  A navigational computer database provides two 
waypoints on either side of a raised hill region.  The 
simulation results are reported with three different edge 
weight desire ratios of w[e1]:w[e2] in equation (14). 

(a) (b) (c)
 

Figure 9 – Lateral Mode Behavior Sim Results 

Figure 9 plots the resulting trajectory of the simulated 
aircraft’s waypoint following behavior, simulated using a 
w[e1]:w[e2] ratio of (a) 1.0:0.0, (b) 0.0:1.0, and (c) 0.5:0.5. 

5. SMART CAMERA SENSOR DESIGN 

This section details the design of an emotional control 
system used to control the behavior of a camera sensor 
mounted on an intelligent unmanned aerial vehicle.  The 
camera is mounted on a pan and tilt mechanism which 
allows two degrees of freedom: yaw rotation (ψ), and pitch 
rotation (θ).  The two high level requirements for the 
camera control system are as follows: (1) control the 
position of the camera to search for targets on the ground 
terrain as the UAV is in flight; (2) provide command input 
to the aircraft to investigate areas when there is a reasonable 
expectation of finding a target; (3) provide an ‘interest’ 
metric in how strongly the sub-network feels that UAV 
should move towards the identified anomaly. The term 
‘reasonable expectation’ is left up to the camera’s emotional 
sub-network to define.  The definition of the target is left 
intentionally vague, as the precise definition is mission 
dependent; for instance, the camera may be an infrared 
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detector searching for infrared signatures on the ground, a 
standard video camera detecting motion, or detecting other 
signature patterns useful in exploration or surveillance.  The 
interest metric is a complex function of different factors; we 
somewhat arbitrarily identified three reasonable 
assumptions about imaging anomalies that feeds into this 
metric: (1) should be imaged at a certain optimal distance, 
(2) imaged for a certain period of time, and (3) larger 
anomalies are more important that smaller anomalies.  Of 
course, different assumptions would probably be made for 
real-world applications that would depend on the camera 
hardware and the characteristics of the real anomaly being 
imaged, and these assumptions would affect the network 
design.  

The emotional camera control system (ECCS) layer is 
shown in relation to external hardware and an existing 
emotional flight control system (EFCS) layer in Figure 10.  
The arrows in this figure represent data flow between 
components. 

EFCS Layer
Navigation Cues

ECCS Layer
Orientation
Commands

Camera
Servos Camera

Video

UAV

Control
Commands

 
Figure 10 - EFCS, ECCS, and Hardware. 

ECCS Design Using Iterative Network Construction 

The ECCS provides pitch and yaw commands to the camera 
hardware (θc and ψc).  To the EFCS component, the ECCS 
provide a parameterized confidence metric (σ) and a 
commanded heading (ψAc), as shown in Figure 11.  This 
component takes an input of the current time (t), and the 
current camera pitch and yaw angles (θ and ψ). 

(ψc,θc)

ECCS

Camera
Hardware

EFCS
(video,t,ψ,θ)

(σ,ψAc)

UAV
Hardware

 
Figure 11.  Input/Output of the ECCS 

The network for the ECCS is designed using the iterative 
construction approach previously described. 

Iteration 1: Sinusoidal Sweep and Neutral Point Behaviors 

The first design iteration involves two basic behaviors.  A 
sinusoidal sweep (SS) pattern commands the camera to 
move around the camera’s state space in a sinusoidal pattern 
as shown in Figure 12.  The neutral point (NP) command 
indicates a desired direction for the camera.  The NP 
reflects the fact that areas of interest ahead of the aircraft 
can be navigated towards with much less energy than areas 

that are behind the aircraft.  The camera control system will 
focus on areas ahead of the aircraft, and will lose interest in 
ground locations as the aircraft passes them. 

ψ

θ

(NP) (SS)

ψmin ψmax

θmin

θmax

(θnp,ψnp)
ψ

θ

ψmin ψmax

θmin

θmax

 
Figure 12.  Neutral Position (NP) and Sinusoidal Sweep 

(SS) Behaviors 

The implementation of CEL system analytical nodes for the 
SS behavior (ANSS) and NP behavior (ANNP) are trivial. 

Sinusoidal Search (ANSS)

θcom=θ0+θmagsin(2 πat)
ψcom= ψmaxsin(2πbt)

θ0, θmag, a, ψmax, b

(θcom,ψcom)(t)

Neutral Point (ANP)

θcom=θNP
ψcom= ψNP

σ=||(θ,ψ) - (θNP,ψNP)||

θNP, ψNP

(θcom,ψcom)
(θ,ψ)

σ

 
Figure 13 - Analytical Nodes for SS and NP  

The system will maintain two desire nodes representing the 
desire to perform the SS behavior (DSS) and the desire to 
return to the NP (DNP).  Both DSS and DNP will be placed 
in a normalized desire set (sum of the squares of the 
magnitudes of the DSS and DNP desires will always be 
equal to one).  A ‘not detecting anomaly’ anxiety node 
(XNDA) will be used to implement displeasure at not 
finding the target material.  An additional anxiety node will 
be used to implement displeasure at pointing away from the 
neutral position (XNP). 

Consider the scenario with the camera initialized at the 
neutral position, DNP=1 and DSS=0 (i.e., the system when 
initialized is content to keep the camera pointing at the 
neutral position).  The camera’s sensors are not reporting 
any targets.  The following graphs illustrate desired 
behavior.  At t=0, anxiety levels are low and DNP is at max. 
 As time progresses to t=A, XNDA increases due to the lack 
of target identification.  XNDA should result in a downward 
pressure on the maximum desire, causing DNP to decrease 
and DSS to increase.  As DSS increases, the effects of the 
ANNP commands will be more pronounced, eventually 
causing XNP to start rising.  The camera will begin to move 
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in sinusoidal sweeps of increasing magnitude about the 
neutral point.  At time t=B, XNDA will saturate (in this 
scenario the system will not identify any targets).  Upward 
pressure on DNP from XNP will cause DNP to rise again.  
The camera will start refocusing its attention to the forward 
position in order to decrease XNP until point t=C.  At t=C, 
XNP is has decreased due to the camera’s location around 
the neutral point, and DNP will also start to fall, until the 
point where XNP begins to rise again the pattern repeats. 

XNDA

XNP

DNP

DSS

t

Desire

Anxiety

t=0 t=A t=B t=C
t

 
Figure 14.  Conceptual Design Point for XNDA, XNP, 

DNP, DSS 

The network diagram for the first iteration is shown in 
Figure 15, which illustrates the sub-network topology for 
the ECCS layer. 
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Figure 15.  Network Diagram for Iteration 1 

The network in Figure 15 was simple enough that the 
parameters could be tuned by hand and simulated given the 
scenario described earlier.  The resulting system behavior is 
shown in Figure 16. 
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Figure 16 – Simulated results 

Iteration 2: Camera Target Following and UAV Command 

The second design iteration incorporates a third behavior 
for the camera: identify anomalies in the video image and 
command the pan-n-tilt camera system to track the 
anomalies.  A ‘detect anomaly’ analytical node (ANDA) 
will process the video input to detect areas of interest, and 
output camera orientation commands to keep these areas in 
view.  Also, the ANDA will output a normalized parameter 
for the detection certainty, which measures how prominent 
the anomaly is on the screen.  The emotional network then 
takes the camera commands from the ANDA into account 
as the certainty metric increases. 

Consider the scenario shown in Figure 17: a camera with 
fixed position has detected an anomaly ahead of the UAV.  
The ANDA will begin reporting an increased certainty 
metric and camera commands to track the anomaly.  A 
desire to track the detected anomaly (DTA) will increase 
(t=A), and the system will orient the camera to track the 
anomaly.  As the anomaly begins to fall behind the aircraft, 
the XNP will increase as the camera points further aft.  
Eventually, at t=B, the XNP will cause the desire DNP to 
increase beyond the desire to keep tracking the particular 
anomaly, and the system will start bringing the camera back 
to the NP.  At t=C, the anomaly is no longer detected, and 
DTA will drop off drastically. 
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Figure 17.  Conceptual Design Point for Anomaly 

Tracking Behavior 

The network design for the second iteration is shown in 
Figure 18. 
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Figure 18.  Network Diagram for Iteration 2 
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System Integration 

The ECCS layer was integrated into a complete system with 
the layers in the composition CLB from Equation (15).   The 
complete system network was instantiated in a simulation of 
a Mars-class exploration vehicle was created with a pan-n-
tilt camera system that renders the scene from the camera’s 
point of view to an off-screen buffer.  The camera filters the 
scene by rendering only one particular texture map, 
simulating a infrared camera as shown in Figure 19.  Here, 
the bottom-left view port is displaying the contents of the 
filtered off-screen buffer for debugging.  The terrain is 
textured with a static layer of ‘red blotches’ that appear in 
both the rendered display and the off-screen buffer. 

 
Figure 19 - Pan-N-Tilt Infrared Camera Sensor in 

Simulation 

The simulation was created with multiple configurations of 
terrain and target locations to select for final parameters 
tuning.  A simulation scenario with resulting trajectory is 
shown in Figure 20.  Two waypoints were created on either 
side of a hilly area, with a target hidden on the hill sloped so 
that the target isn’t visible from the waypoint path.  The 
aircraft‘s terrain avoidance anxiety (with a w[e1]:w[e2] 
ratio of 0.2:0.8) guides the aircraft around the hill till the 
camera identifies the target.  A simple excitation network 
based on a desire node is used to report the excitation value 
of the camera to the explorer, and the camera commands 
blend with the desire for waypoint following behavior and 
terrain avoidance behaviors.  The simulation  

 
Figure 20 – Simulation Response 

6. MEMORY AND DYNAMIC NETWORKS 

The onboard intelligence for the perceptual sub-network of 
the ECCS described to this point is very reflexive, akin to 
implementing a complex vector of desirability; indeed, the 
vector of desirability could be defined as the accumulated 
set of parameter variables of each node in a layer, 
composition, or system.  The camera system to this point 
responds to current images only by processing based on an 
impression of the images as they pass in and out of the 
camera network’s short-term memory.  Simple desires in a 
desire group balance the desire to perform a small set of 
actions in an attempt to maximize the chance of finding 
useful anomalies, and the size of the anomaly is the only 
real classification. 

The next step taken was to implement a generalized image 
model capable of building a database of impressions of the 
external world over time.  The generalized image model 
database was implemented in the camera system using 
dynamic network structures that identify and classify each 
anomaly encountered.  Since anomalies are static, 
identification was simply a transformation from the 
camera’s screen coordinates to estimate the anomaly’s 
position in the world, which worked well enough for sparse 
distributions of anomalies (given the complex terrain 
elevation topology, the transformation method was not 
precise, and dense clusters of anomalies were often lumped 
into a single anomaly in the ECCS’s memory engram 
structures). 

Given that the ANDA could identify anomalies by locating 
its real-world position, each new anomaly located was 
associated with a small emotional memory sub-network that 
defines several internal state variables dedicated to 
characterizing the anomaly.  We refer to this structure as a 
memory engram.  The state variables in an engram at a 
particular time define the ‘impression’ that the ECCS has 
formed about the particular anomaly.  These vertices 
influence the interest metric reported to the EFCS, 
characterizing how ‘excited’ the sub-network is about the 
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anomaly.  Also, when satisfactorily imaged, any future 
sightings of the anomaly by the ANDA analytical node are 
ignored. 

This system provides two paths through the emotional 
system’s cognitive structure. A low-level reflexive path 
provides the system with instinctual motion control of the 
camera, moving the camera from one anomaly to another 
based on the systems’ higher level state, ignoring certain 
anomalies and favoring others, while computing low-level 
camera control commands.  Higher-level deliberative paths 
can also be traced in the network that go through elements 
of the memory sub-networks to classify the anomalies and 
compute preferences between different informed and 
uninformed search strategies, attempting to maximize the 
utility sensor given limitations on capabilities and little 
knowledge of the environment. 
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Figure 21.  Dynamic Memory Network ‘Engrams’ 

The memory layer modification to the CEL system was 
added to the complete system and instantiated in simulation 
in a ‘four corners arena’, shown in Figure 22.  Anomalies 
were place at four corners of a terrain with a large circular 
gulley in the middle and two waypoints straddling the 
circular gulley. 
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Figure 22 – Four Corners Arena 

The results of the simulation are shown in segments in 
Figure 23 with a w[e1]:w[e2] ratio of (0.5:0.5).  When a new 
anomaly is encountered, the camera system becomes 
excited, guiding the UAV towards the anomaly, until 
sufficient imaging decreases the excitation level and the 

UAV continues to the next anomaly.  When all anomalies 
have been sufficiently imaged, the aircraft falls into a stable 
pattern similar to Figure 9. 

 
Figure 23 –Trajectory of Simulated Explorer with 

Engramatic Smart Camera 

Other Uses of Dynamic Networks 

Given the benefit described that the CEL system has in 
creating adaptive cognitive networks, several difficulties 
were encountered.  The first is that the cognitive network 
structures developed are highly dependent on the 
assumptions.  Different assumptions result in different 
implementations, and changing the assumptions results in a 
time consuming redesign of individual layers, which in turn 
requires additional tuning of parameters in different layers 
when the system is reintegrated.  Another related limitation 
of our current approach is the lack of adaptive learning 
mechanisms.  Behavioral and cognitive networks in this 
system must be purposefully designed. 

Conceivably, learning networks could be purposefully 
designed to manipulate and reassemble network structures 
in response to anomalies.  Learning ‘meta-layers’ would 
adapt the network topology in a predefined manner; these 
meta-layers could be implemented using the CEL network 
formulations described, or through a hybridized approach 
with more traditional techniques. 

Dynamic network structures can be defined for an adaptive 
structure used during the design phase to automatically 
assemble a design based on techniques such as genetic 
algorithms.  Consider for instance the layer shown in Figure 
24.  This layer can accommodate any number of ECCS 
controlled camera systems.  This system filters the input 
from multiple cameras and provides a single output, 
allowing it to be swapped into the network in place of an 
existing ECCS system.  This intermediary layer provides a 
deliberative sub-network dedicated to evaluating and 
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calculating preferences for each camera component in a 
similar manner to how behaviors are combined in the 
ECCS. This layer also provides a reflexive sub-network that 
processing and filters the multiple signals into a signal 
output signal, based on the deliberative layer.  Although a 
simple example, this illustrates how dynamic structures 
could be used, for instance, to implement simple run-time 
plug-and-play mechanism, or for use in design time as part 
of a genetic description of the architecture for manipulation 
by evolutionary algorithms. 

Sensors CEL Layer(s) UAV CEL Layer(s)Plug-And-Play CEL Layer

ECCS/Camera
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Desire B

Desire …

X
X
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Figure 24.  Simple Plug-And-Play Mechanism 

7. UAV NAVIGATION SYSTEM 

This section gives a brief description of a more capable 
lateral mode navigation system created for a remote fixed-
wing UAV explorer, part of the autonomous control system 
being developed.  This system was constructed using the 
iterative approach detailed in previous sections.  The major 
components of this network design are shown in Figure 25. 
 In this design, five different behavioral strategies are 
available to the explorer: (1) terrain following, (2) random 
walk, (3) grid search, (4) drift-circling, (5) and camera 
command.  Terrain following and camera command were 
described previously.  Grid searching follows a preplanned 
grid pattern in the flight management computer’s database.  
Random walk provides random heading commands based 
on an ad-hoc stochastic algorithm, and the circling 
command performs a minimal-energy circling drift 
behavior, intended to minimize control surface actuation 
and thrust energy expenditure. 

A terrain engram layer records properties of the terrain, 
determining if the ground is appropriate for implementing 
the terrain following algorithm.  Power and fuel levels 
consumption are monitored, influencing the preference for 
the minimal-energy circling behavior.  The sparseness of 
targets found negatively influences the desire for behaviors 
that perform slower searches over smaller areas.  Other 
influences include behavior engrams which record how 
well-suited a particular behavior is to the environment.  
Note that the main control input into the UAV is through 
the ailerons.  Control networks for the rudder, throttle, and 
elevators, while implemented in the CEL system, amount to 
a typical cascading PID control system, with the main 

control strategy using elevators to control airspeed and 
throttle to control altitude AGL. 
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Figure 25 –Lateral UAV Control System 
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8. CONCLUSION 

The Cognitive Emotion Layer architecture provides a 
structure for implementing emotion based reasoning, 
adaptive decision making, behavior selection and control for 
intelligent exploration of remote environments by an 
autonomous unmanned aerial vehicle.  The architecture 
extends several existing architectures in the literature, 
expanding them with dynamical formulations that allow 
systems formulated in the CEL architecture to take on the 
responsibility of controlling all aspects of behavior, from 
low-level flight controls to higher level decision-making, 
adapting its behavior in highly uncertain environments to 
allow for practical self-governing autonomy.  These 
extensions also provide the ability to analyze the system 
using system and control theoretic techniques.  The CEL 
formulation accommodates component-based development 
methodologies for designing and implementing control 
structures, allowing smaller reusable solutions to be 
composited quickly into larger networks.  Large complex 
networks can be analyzed and tuned by tracing paths and 
analyzing influence subgraphs.  Further extensions to the 
dynamic capabilities of the architecture can allow for self-
modifying networks that learn and adapt in more efficient 
manners. However, control systems designed with this 
system are often rigid and cumbersome to manipulate, 
requiring substantial redesigns to accommodate small shifts 
in requirements. This is somewhat alleviated by providing 
reusable primitive definitions that can be layered and 
composited, and implementation-specific details can be 
added to decrease the development time needed to create 
new systems.  The CEL architecture has demonstrated its 
ability to control small sub-networks and govern simple 
behaviors in an adaptive manner.  Scalability and usability 
are to be addressed as the system continues to develop. 
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