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Urban Air Mobility Network and Vehicle Type— 

Modeling and Assessment 

Lee W. Kohlman, Michael D. Patterson,
*
 and Brooke E. Raabe

†
 

 

Ames Research Center 

 

SUMMARY 

 

This paper describes exploratory modeling of an on-demand urban air mobility (UAM) network 

and sizing of vehicles to operate within that network. UAM seeks to improve the movement of 

goods and people around a metropolitan area by utilizing the airspace for transport. Aircraft 

sizing and overall network performance results are presented that include comparisons of 

battery-electric and various hybrid-electric vehicles fueled with diesel, jet fuel, compressed 

natural gas (CNG), and liquefied natural gas (LNG). Hybrid-electric propulsion systems 

consisting of internal combustion engine–generators, turbine-generators, and solid oxide fuel 

cells are explored. Ultimately, the “performance” of the UAM network over a day for each of the 

different vehicle types, propulsion systems, and stored energy sources is described in four 

parameters: 1) the average cost per seat-kilometer, which considers the costs of the energy/fuel, 

vehicle acquisition, insurance, maintenance, pilot, and battery replacement; 2) carbon dioxide 

emission rates associated with vehicle operations; 3) the average passenger wait time; and 4) the 

average load factor, i.e., the total number of seats filled with paying passengers divided by the 

total number of available seats. Results indicate that the “dispatch model,” which determines 

when and where aircraft are flown around the UAM network, is critical in determining the 

overall network performance. This is due to the often-conflicting desires to allow passengers to 

depart with minimal wait time while still maintaining a high load factor to reduce operating 

costs. Additionally, regardless of the dispatch model, hybrid-electric aircraft powered by internal 

combustion engines fueled with diesel or LNG are consistently the lowest cost per seat-

kilometer. Battery-electric and future technology LNG/solid oxide fuel cell aircraft produce the 

lowest emissions (assuming the California grid) with LNG-fueled internal combustion engine–

powered hybrids producing only slightly more carbon dioxide. 

I. INTRODUCTION 

Urban air mobility (UAM) is a transportation concept in which people and cargo are moved 

around metropolitan areas in air vehicles as a part of a multi-modal transportation system. 

Although it could be argued that limited forms of UAM exist today, such as the helicopter 

services operated by companies like Blade [1], the concept implied by the term UAM consists of 

much larger numbers of aircraft transporting considerably more people in more routine 

transportation than existing services provide. To help describe these novel operations, NASA 

recently proposed the concept of a UAM Maturity Level, which describes a gradual progression 

                                                           
*
 NASA Langley Research Center, Aeronautics Systems Analysis Branch, Hampton, VA, 23681. 

†
 University of California Davis, Davis, CA, 95616. 
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of UAM operations moving from individual test flights to a truly ubiquitous transportation 

system that would consist of thousands of aircraft flying simultaneously over a single 

metropolitan area [2]. Many of the proposed UAM transportation services assume that services 

will be provided in an on-demand or near-on-demand manner so that they can effectively replace 

trips that are taken by cars today. Prominent proponents for this novel form of transportation 

system include Uber [3], [4]; Joby Aviation [5], [6]; Lilium [7]; and Kitty Hawk [8]. 

 

There are many important issues that must be addressed before widespread UAM transportation 

systems can be implemented practically, such as vehicle certification and economic viability. 

Currently existing, certified vehicles lack many of the characteristics necessary to meet all of the 

requirements of a successful UAM vehicle, including the need for low noise levels and low 

operating costs. Many different vehicle configurations have been proposed to address the 

technical and public acceptability requirements around issues such as safety and emissions.  

 

One of the technologies common to many of the emerging UAM vehicles is electrification of the 

propulsion systems. Distributed electric propulsion (DEP) is one such technology that can enable 

more efficient vehicle designs than are practical with conventional mechanical systems. DEP 

relies on electricity to distribute power to multiple motors, which can drive multiple types of 

propulsion devices such as propellers, rotors, and ducted fans. One application of DEP is to 

create a high-lift system on a conventional takeoff and landing (ToL) vehicle, which can enable 

vehicles with a higher cruise efficiency than with conventional high-lift systems alone [9], [10]. 

DEP can also enable propellers to be placed at wingtips where they can reduce induced drag or 

increase propulsive efficiency [11], [12]. When applied specifically to vertical takeoff and 

landing (VTOL) vehicles, DEP enables practical unconventional vehicle designs that can achieve 

considerably higher cruise efficiency than feasible with conventional rotorcraft [13], though this 

cruise efficiency typically comes at the cost of a reduced efficiency in hover. Examples of some 

of these novel vehicle designs include NASA’s GL-10 tilting wing and tail unmanned aerial 

vehicle [13], [14]; lift-plus-cruise configurations like Kitty Hawk’s Cora [8]; and Joby 

Aviation’s S2 and S4 multi-tiltrotor configurations [5], [15]. 

 

There are many ways in which electrical power for DEP aircraft can be generated on board. The 

most suitable means of generating electrical power for UAM aircraft, which are typically 

proposed in the one- to six-passenger-size class, include batteries, an internal combustion (IC) 

engine with a generator, a turbine with a generator, and a solid oxide fuel cell (SOFC) system 

that reforms hydrocarbon fuels. Generally speaking, at the scale of interest, the turbine is the 

lightest system, but also the least fuel efficient. The IC engine with generator is the next lightest, 

and more efficient than the turbine. The battery and SOFC systems can be comparable to the 

combustion-based systems in mass and efficiency depending on the range of the mission [16].‡ 

This paper presents a comparative analysis of several combinations of fuels and power sources to 

provide insight into which of these may be the most appropriate for the novel UAM missions 

being proposed.  

                                                           
‡
 The efficiency of the battery is often cited as 95 percent, but when taking into account the efficiency of electricity 

generation, the SOFC system can be very competitive. Because of the high specific energy of fuel, a SOFC system 

will win on a mass basis for longer missions. 
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The paper begins with a description of how the aircraft, and the network in which they operate, 

are modeled. The aircraft sizing method uses a power loading model to define the aircraft 

missions and first order linear approximations for most component masses. A fleet is then built 

from the sized aircraft, and the fleet operations for one day are simulated. The network model 

involves a metropolitan area representation (for this paper, the San Francisco Bay Area), a 

demand model, and a dispatch model. The demand and dispatch models are critically important 

to identifying various behaviors of the network and deriving direct operating costs (DOCs) for 

the network. DOC and CO2 emissions are estimated for a variety of propulsion system 

technologies. The effects of sizing mission length and SOFC technology level are also explored. 

II. VEHICLE SIZING 

To compare different aircraft configuration, propulsion system, and energy storage types, the 

mission that the aircraft is designed to fly must first be specified. Then, various aircraft can be 

sized to perform that mission so that the relative comparisons between the aircraft are made in an 

“apples-to-apples” manner. This section describes the methods used to size vehicles for a given 

mission and presents comparisons of the various vehicles sized with different propulsion 

systems. 

A. Model Assumptions 

Because the work in this paper is an extension of what was previously presented in reference [1], 

many of the same assumptions are made here. The subsections below provide a quick overview 

of the assumptions, highlighting those items that differ from reference [1]. 
 

1. Vehicle Propulsion System Component Specifications 

The engine and turbine sizing models for each vehicle type are described in reference [16]. The 

specific power of the SOFC system is varied to account for potential improvements to this 

relatively new technology to determine the sensitivity of the DOC and vehicle maximum takeoff 

weight (MTOW) to the technology level assumed. Specifically, SOFC specific power is set to 

312 W/kg for diesel-fueled variant [17] and 350 W/kg for near-term liquefied natural gas (LNG) 

because of anticipated weight savings with a simplified fuel reformer. Future advanced 

LNG/SOFC options are considered at 525 W/kg and 700 W/kg for mid- and long-term 

technology improvements. The efficiency of electricity production from the lower heating value 

of the fuel for all SOFC systems is assumed to be 60 percent [17].  

 

The battery model is built on a database of commercially available cells, which each have 

different specific power and specific energy specifications. For simplicity, and to model 

projected future increases in battery technology that may be present at the time UAM operations 

occur, the battery pack is assumed to have the same specifications as the cell-level technology 

(i.e., there is zero “packaging factor” or “overhead” in going from the cell to the battery pack).§  
  

                                                           
§
 It is acknowledged that the inherent tradeoff in specific energy and specific power modeled by this approach may 

not reflect the real tradeoffs that would occur with wisely designed battery packs (as cells can be connected in 

parallel and series in different manners within battery packs to optimize the pack architecture). However, the authors 

believe that this approach provides a reasonable rough estimate for the high-level exploratory analysis performed in 

this paper. 
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Table 1. Vehicle Component Assumptions: Specific Power and Efficiency 

Item Specific Power (kW/kg) Efficiency 

IC Engine 0.0009.*design_power + 1.4887 0.000004.*design_power + 0.3699 

Turbine Engine 0.2476.*design_power.^0.4509 0.0641.*design_power.^0.2103 

SOFC 0.312, 0.350, 0.525, 0.700 0.60 

Battery Varies with cell 0.95 

Generator 16 0.95 

Rectifier 40 0.985 

Bus 1000 0.998 

Inverter 25 0.985 

Motor 4 0.95 

Auxiliary Power Source 25 0.985 

Battery Charge Controller 25 0.985 

Liquid Cooling System 6.25 1 

 

 

This approach implies that the battery-electric aircraft discussed in this paper could not be 

produced today and relies on technological improvement. The maximum specific energy that can 

be selected is 293 Wh/kg, which has an associated specific power of 586 W/kg. Additionally, to 

demonstrate the impact that even further future increases in battery technology may have, results 

with a “technology factor” of 1.5 applied to the specific energy of the batteries from the database 

are also shown. This factor has the impact of increasing the maximum specific energy in the 

database to 440 Wh/kg. Additional assumptions are included in Table 1.  
 

2. Aircraft Sizing Process 

The sizing mission is defined by specifying the power loading (i.e., kW/kg) over time. An 

example power loading mission profile is presented in Figure 1. In this example, the mission 

begins with a taxi segment, which requires a power loading of 0.0083 kW/kg for 30 seconds. 

Next, there is a takeoff segment requiring 0.25 kW/kg for 30 seconds followed by a transition 

segment, which requires 0.2 kW/kg for 30 seconds. Then the aircraft cruises for 10 minutes at a 

power loading of 0.083 kW/kg. The aircraft then lands with a power loading of 0.25 kW/kg for 

30 seconds and taxis in under a power loading of 0.0083 kW/kg for 30 seconds. Then, this 

mission is repeated. Finally, there is a 20-minute cruise reserve. The mission segment time 

durations are based on missions proposed by Patterson et al. [18], and the power loading is 

derived from McDonald and German [19].  

 

Each type of aircraft has a different set of assumed power loading parameters. In Table 2, the 

power loading for each flight segment is listed for each type of aircraft considered: the quadrotor, 

tiltrotor/tiltwing, lift plus cruise, and side-by-side helicopter. These power loading numbers  

are derived from the takeoff and cruise power requirements presented by McDonald and  

German [19]. 
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Figure 1. Example aircraft mission profile shown as power loading over time. 

 

Table 2. Power Loading Assumptions for Each Flight Segment 

Parameter/Mission Segment Quadrotor Tiltrotor/Tiltwing Lift Plus Cruise Side by Side 

pVTOL (kW/kg) 0.125 0.25 0.25 0.125 

pClimb (kW/kg) pVTOL (pVTOL/4)*1.5 (pVTOL/3)*1.5 pVTOL 

pCruise (kW/kg) pVTOL*1.5 pVTOL/4 pVTOL/3 pVTOL 

pTaxi (kW/kg) 0.1*pCruise 0.1*pCruise 0.1*pCruise 0.1*pCruise 

pLoad (kW/kg) 0 0 0 0 

pCharge (kW/kg) -0.2 -0.2 -0.2 -0.2 

 

 

For an all-electric battery-powered vehicle, an initial guess is made for the MTOW of the vehicle 

(2*target payload) and the battery is first sized by power and the aircraft run through the mission. 

The battery capacity is updated based on the energy used, and the vehicle is run again until both 

power and energy requirements are satisfied. The resulting payload is determined and the 

MTOW guess updated based on the error in payload. The sizing is run until the error between 

achieved payload and target payload is less than 2 kg. The hybrid-electric vehicle sizing involves 

the same process; however, iteration of both the augmentation battery and the fuel tank are 

performed to ensure the augmentation battery meets power and energy requirements while the 

tank is run to empty at the conclusion of the sizing mission. An example of the sizing output for 

a battery-only vehicle is shown in Figure 2. The battery state of charge is shown depleting at 

different rates for different parts of the sizing mission in Figure 2a. The relative fraction of the 

“structure,” which includes everything but payload and battery, is shown relative to the battery 

and payload fractions in Figure 2b. 
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 a) Battery state of charge during sizing mission.    b) Battery vehicle mass fractions. 

Figure 2. Example output of the sizing mission for a battery-only vehicle. 

 

 
  a) Battery and fuel during sizing mission.        b) Fueled vehicle mass fractions. 

Figure 3. Example output of the sizing mission for an LNG-IC vehicle. 

 

Given the same sizing mission, Figure 3 is an example of the output from sizing an LNG-IC 

vehicle. In Figure 3a, the fuel is observed depleting to zero while the battery charge remains 

above zero (sizing was successful because the battery is capable of performing the mission, and 

the fuel tank contains just enough fuel to meet mission and reserve requirements). In Figure 3b, 

the mass of the vehicle, sized with the same mission, is significantly less than the all-battery 

option shown in Figure 2b. The structure fraction is the same (this is set to 50 percent) but the 

payload fraction is much higher. 

 

3. Carbon Dioxide Emission Calculation Assumptions 

Carbon dioxide (CO2) emissions are considered in the results below. The CO2 generation rates 

shown in Table 3 were used for the various fuels considered. These represent the CO2 that will 

be generated by the energy loaded onto the aircraft. For comparison purposes, imagine that that 

electricity will be converted to useable mechanical energy at around 94 percent efficiency while 
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the LNG or diesel may be at around 30 percent. For electricity, the rate of CO2 emissions was 

selected to represent the present California grid emissions, currently one of the cleanest of the 50 

states, because the region under consideration was the San Francisco Bay Area. The CO2 

emissions for the fuels represent the CO2 released by burning the fuel and releasing one MJ of 

thermal energy. 
 

Table 3. CO2 Emissions Rates 

Energy Type CO2 Emissions 

Electricity 78.2 g CO2/MJ (CA grid) 

LNG 53.6 g CO2/MJ (raw) 

Diesel 74.1 g CO2/MJ (raw) 

 

 

4. Model Limitations 

One limitation of this analysis is the assumption that the aircraft structure, motors, and props 

make up a fixed percentage of the vehicle, with the remaining portion consisting of the power 

system, energy storage, and payload. For the results presented in this section, the structural mass 

fraction was assumed to be 50 percent for all configurations, for lack of better numbers at the 

time the model was run. Subsequent modeling of the lift plus cruise and tiltrotor/tiltwing use 

structure fractions of 51.2 percent and 39.3 percent, respectively. These structure fractions were 

selected by comparison to the weight fractions of a tiltwing vehicle and the lift-plus-cruise 

concept vehicle presented by Silva [20]. 

 

An additional limitation of the analysis is that the weight of the fueled aircraft does not decrease 

as fuel is used. Rather, the weight is constant for both fuel-based and battery-powered aircraft. 

This constant weight assumption leads the fueled vehicles to consume slightly more fuel than 

would be expected. This limitation implies that when comparing results between battery-electric 

and fueled vehicles, the battery-electric vehicles will appear somewhat more favorable than if the 

fueled vehicles decreased in weight over time. This will be corrected in future versions. 

B. Propulsion System and Energy Storage Type Comparisons 

Before moving into a full UAM network simulation, it is instructive to study the general 

tradeoffs between the various energy storage and propulsion system types. A tiltrotor vehicle was 

sized to a mission consisting of a single partial cycle (i.e., takeoff and cruise) for various cruise 

durations and three separate payloads to illustrate how the MTOW and CO2 emissions vary. 

Only takeoff and cruise were used because takeoff largely determines system power 

requirements and cruise sets energy requirements. 

 

The results in Figure 4 through Figure 6 compare battery-powered vehicles with LNG and diesel 

vehicles using IC engines, turbines, or SOFC systems at three scales: one, two, and four 

passengers. In each of the following three figures, MTOW is plotted against design endurance 

for each technology type in subfigure a), and the CO2 generation rate in grams CO2 per minute is 

plotted against design endurance for each technology type in subfigure b). 
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   a) MTOW vs. endurance.        b) g CO2/minute vs. endurance. 

Figure 4. Comparison of one-passenger (i.e., 131.5-kg or 290-lb payload) vehicles. 

 
   a) MTOW vs. endurance.        b) g CO2/minute vs. endurance. 

Figure 5. Comparison of two-passenger (i.e., 263-kg or 580-lb payload) vehicles. 

 
   a) MTOW vs. endurance.        b) g CO2/minute vs. endurance. 

Figure 6. Comparison of four-passenger (i.e., 526-kg or 1160-lb payload) vehicles.  
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For nearly all endurances at one, two, and four passengers, the IC engine results in the lowest 

weight, followed by the turbine. The battery vehicle is lighter than the SOFC vehicle for 

endurances of up to approximately 30 minutes, but the SOFC becomes lighter than the battery 

vehicle for longer endurances. The battery vehicle sizing only closes (i.e., feasible, non-near-

infinite weight vehicles result) at endurances of approximately 66 minutes and below. For 

endurances under 33 minutes, the battery vehicle exhibits the lowest CO2 emission rate. At 

higher endurance, the LNG/IC and LNG/SOFC have comparable CO2 generation rates to one 

another, with the SOFC resulting in slightly improved emissions. While the IC engine is 

significantly less efficient than the SOFC, the lighter weight of the IC aircraft reduces the 

required fuel burn and leads carbon emissions of the IC to be similar to the SOFC, though the 

SOFC still results in slightly lower emissions than the IC engine. The next highest CO2 rates are 

the diesel IC and diesel SOFC. The turbines, because of the small size of the system, are very 

inefficient and result in the highest CO2 production rates. 

III. NETWORK MODEL 

In order to assess the performance of different vehicles within a vertiport network, a full UAM 

network simulation was built. The UAM network is defined by the locations of vertiports, the 

relative demand expected at each vertiport (which is defined by “weighting” factors stating the 

probability of a trip originating or ending at the vertiport), and the number of pads at the vertiport 

that are available for takeoff/landing, parking, and replenishment. 

A. Metropolitan Area Representation 

A vertiport network is defined using a .kml file exported from a My Map© by Google [21]. The 

vertiport locations are those described by Daskilewicz et al., and more information on location 

selection and origin/destination weightings is available in reference [22]. 
 

1. Vertiport Site Selection 

The San Francisco Bay Area was selected for study with the network model. This region is a 

large metropolitan area that includes several major city centers, significant surrounding urban 

sprawl, and is largely constrained by existing infrastructure—the San Francisco Bay and several 

mountain ranges. A map of vertiport sites is shown in Figure 7. Folsom is not included in the 

map or the simulation; the battery-powered vehicles had trouble closing because of the long 

distance to the Folsom vertiport. 
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Figure 7. Map of proposed vertiport sites in the San Francisco Bay Area. 

 

The GPS coordinates, origin and destination weighting, and number of pads for each vertiport 

are shown in Table 4. The GPS coordinates are used to calculate mission distance; distance along 

with speed and routing factor (see Table 5) are used to calculate time between each of the 

vertiports. Weighting is used in the demand generation algorithm, which is described in more 

detail below. The number of takeoff and landing (ToL) pads were selected to reduce bottlenecks 

at the vertiports based on experimental runs of the simulation. 
 

2. Other Parameters 

There are many other relevant parameters to the network simulation. Table 5 lists these 

parameters needed to run the model. Many of these parameters are discussed in later sections. 
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Table 4. Vertiport Parameters 

 Location Weighting     
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Oakland 37.80448996 -122.2582997 15 61 8 8 16  

Fremont 37.53653094 -121.9869842 52 34 12 8 16  

Weibel 37.50875569 -121.929619 15 3 4 8 16  

Doolan Canyon 37.71648155 -121.8433985 20 20 4 8 16  

Livermore 37.67114195 -121.7760421 42 20 12 8 16  

Brentwood 37.94220798 -121.7149882 19 6 4 8 16  

San Ramon 37.75696664 -121.9527965 21 24 4 8 16  

Walnut Creek 37.8703056 -122.0794298 18 22 4 8 16  

Bollinger Canyon 37.74553802 -121.8986608 23 6 4 8 16  

Folsom 38.67095983 -121.1417955 4 5 0 0 0 Not used 

San Francisco 

Financial District 

37.79031415 -122.4024319 14 33 4 8 16  

Alameda 37.78419086 -122.327654 0 0 4/16* 8 16 *Depot 

San Mateo 37.56567723 -122.3183091 25 23 12 8 16  

Foster City 37.54197722 -122.2686095 29 23 8 8 16  

Redwood City 37.48046752 -122.2225149 20 23 4 8 16  

SFO Airport 37.62146198 -122.3823131 32 26 16 8 16 Airport 

North San Jose 37.3939046 -121.9218031 6 7 4/12* 8 16 *Depot 

SJC Airport 37.35123421 -121.946514 16 27 12 8 16 Airport 

Sunnyvale 37.3923169 -122.0086362 9 8 4 8 16  

Palo Alto 37.40819168 -122.1615997 3 12 4 8 16  

 

 

3. Distance to Flight Time 

The description of each vertiport in the .kml file contains a tag that indicates several parameters 

for that vertiport including the number of landing pads, number of replenishing stations (if used), 

the number of pads for parking, the origin and destination demand weightings, and the vertiport 

type. The .kml file also includes the GPS locations of the vertiports and the names of the 

vertiports. All of this information is parsed and loaded into the city model. The Haversine 

distance (distance between two points on the surface of a sphere) is then calculated for each 

vertiport pair. That distance is then multiplied by the routing factor, a number that is a correction 

factor to take into account deviation from straight-line flight paths to route around obstacles. The 

routing factor that was used corresponds to the value presented by Moore [3]. Finally, the 

specified vehicle cruise speed is used to convert from distance to flight time. Real flight time 

along with all other times, such as mission segment times including loading, takeoff, climb, 

landing, and taxi, are converted to integer time steps. 
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Table 5. Other Relevant Network Model Parameters 

All Name Value Description 

 num_people 10000 number of people in the system 

 ratios [.4,.1,.5] commuter, churn, airport transfer 

 parking_fraction 0.25 fraction of filled parking spaces below which 

rebalance is triggered 

 max_wait_time_dispatch 300 time a person will wait before a vehicle is 

dispatched 

 max_wait_time 300 time a vehicle will wait to be filled 

 speed 208.35 km/hr 

 people_per_vehicle 7 nominal people-flights per aircraft 

 new_time_step 30 time step 

 routing_factor 1.42 additional distance multiplier for each route [3] 

 prediction_correction 1.6 adjustment for fuel use prediction 

 rebalance 1 rebalance, yes or no 

 new_demand 1 generate new demand, yes or no 

 timers [180,30,30,60,30,30,180] load, taxi out, takeoff, climb, land, taxi in, unload 

 max_iterations 100  

 tVTOL 30 seconds in VTOL mode (sizing only) 

 tCruiseReserve 1200 seconds cruise reserve (sizing only) 

 tClimb 60 seconds in climb mode (sizing only) 

 tCruise 1200 seconds in cruise (sizing only) 

 tTaxi 30 seconds in taxi in or out (sizing only) 

Battery reserve_limit_bat 0.99 limit below which recharge occurs 

 recharge_rate 200 kW, rate for battery recharge 

 nCycles 1 number of flights to run for sizing mission 

Fuel replenish_at_depot 16 override number of refuel stations at depots 

 reserve_limit_fuel 0.25 limit below which refuel occurs 

 refuel_rate 1 kg/sec, rate of refueling 

 recharge_in_flight 1 Boolean, allows battery recharge in flight 

 nCycles 8 number of flights to run for sizing mission 

 

 

4. Model Limitations 

The city model contains a number of assumptions that introduce inherent limitations of its ability 

to model all the intricacies of realistic UAM operations. The model could be used to provide 

insights into the impacts of preliminary selections on vehicle and network performance, and over 

time many of these limitations will be addressed with additional modeling fidelity. A few of the 

more important limitations of the model, and how results could deviate from real-world 

operations, are discussed.  

 

First, the model vastly oversimplifies the complex airspace integration issues that must be solved 

prior to realizing UAM. Specifically, the model assumes that UAM air traffic can be deconflicted 

and safely separated from all forms of air traffic (including aircraft outside of the UAM 
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network). The model assumes that aircraft will fly some distance farther on average than the 

direct distance between vertiports to allow for safe airspace integration. This increased flight 

distance is accounted for via a “routing factor,” which was set to 1.42 for the work presented in 

this paper, that multiplies the direct distance between origin and destination. The model does, 

however, handle interactions of vehicles at the vertiports, i.e., no two aircraft can occupy the 

same ToL pad, replenishing, or parking pad at the same time. If an aircraft arrives at its 

destination while other aircraft are occupying the ToL pads, the aircraft loiters (at a power setting 

equivalent to cruise) until a pad is free and a landing can ensue.  

 

All vehicles in the network are the same. The capacity to model multiple vehicle types does not 

currently exist; for example, simultaneously modeling vehicles with different numbers of seats in 

the same model or using a mix of battery and fueled vehicles. 

 

There is no stochastic nature to the mission segment times modeled. Mission durations are 

directly calculated from distance, speed, and routing factor. Variations in speed or routing are not 

taken into account. Also, variations in other flight segments are not captured. 

B. Aircraft Sizing Method for Network Simulation 

Although aircraft were originally sized to the same mission as described previously in Section 

II.A.2, early exploration of the network performance with aircraft sized to these missions and 

practical operational considerations led to modification of the sizing missions for both battery-

electric and hybrid-electric vehicles.  

 

Early simulations with battery-electric vehicles sized to cruise lengths of 10 minutes, as 

discussed previously, indicated that these vehicles could not fly the longer routes within the San 

Francisco Bay Area network described in Section III.A.1. Additionally, to keep the mass of the 

battery-electric vehicles from growing too significantly, it was assumed that every vertiport 

would have charging infrastructure so that the aircraft could be sized to only a single flight cycle 

with a 20-minute reserve, which corresponds to existing Federal Aviation Regulation 

requirements for rotorcraft under visual flight rules (14 CFR § 91.151). With these assumptions, 

the sizing mission for the battery-powered aircraft is shown in Figure 8, which represents a 

single 20-minute mission with a 20-minute-cruise reserve. 

 

Because the size of a hybrid-electric vehicle does not increase very significantly as the endurance 

of the vehicle is increased (as shown in Section II.B), it seems logical to size hybrid-electric 

UAM vehicles to perform multiple missions prior to needing to refuel. Additionally, storing fuel 

at every vertiport may be impractical from a fuel distribution logistics standpoint, and it is a 

potential safety hazard to have fuel stored at every vertiport. Consequently, there is the ability to 

allow hybrid-electric vehicles to refuel at a (or one of multiple) centralized refueling depot(s) in 

a metropolitan area or at only specific vertiports where fuel storage may not be problematic (e.g., 

one co-located at an existing airport). With these considerations, and after early initial 

simulations of the San Francisco Bay Area UAM network, the nominal number of 20-minute 

cycles for the fueled vehicles was selected to be eight, which is one more than the average 

number of missions that a one-seat aircraft would fly in a day. An example of the eight-cycle 

mission is shown in Figure 9. This sizing mission minimizes the number of times a vehicle needs 

to refuel during the day, without sizing the vehicle with an excessive fuel capacity. 
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Figure 8. Single-cycle sizing mission for battery-powered vehicles. 

 

 

 

Figure 9. Example eight-cycle sizing mission for fueled vehicles. 
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C. Demand Model 

The demand model is based on the creation of individual people with different demand types. 

Three types of demand—commuter, churn, and airport transfer—are modeled. A commuter takes 

two trips: one in the morning, likely from home to his/her place of work, and one in the evening, 

returning to his/her origin. Churn demand models a person who takes a single trip from one point 

to another and represents trips such as an urgent business meeting across town. An airport 

transfer either takes a trip to an airport or from an airport. 
 

1. Request Timing Generation 

Trip requests are generated in one of three ways, depending on the type of demand. 

 

The first type of demand, commuter, creates two trips. The first occurs sometime in the morning, 

defined by a normal probability distribution centered at 8:00 AM with a standard deviation of  

2 hours. The second commuter trip occurs in the evening, defined by a normal probability 

distribution centered at 5:00 PM, with a standard deviation of 2 hours. 

 

A churn trip is generated on a time distribution that is at a constant probability between 5:00 AM 

and 9:00 PM. Prior to 5:00 AM, the probability distribution is defined by half of a normal 

distribution with a peak at 5:00 AM and a standard deviation of 1 hour. Similarly, after 9:00 PM, 

the demand is modeled as half of a normal probability distribution with a mean of 9:00 PM and a 

standard deviation of 1 hour. This is called a “flat normal distribution” since it is a uniform 

distribution terminated with normal distributions. This distribution was chosen to provide a base 

level of activity in the network that was tied only to people being awake for the day and having a 

desire to take a trip to some location. 

For the purposes of this modeling, the airport transfers were generated with a distribution of 

normal probability distributions, on a normal probability distribution centered at 12 PM with a 

standard deviation of 6 hours. The smaller normal distributions had a magnitude between 90 and 

270 and a standard deviation between 0.2 and 1.0 hours. This distribution of distributions was 

used to generate the time requests in such a way that the “peakyness” of airport transfer demand 

could be captured. An example of the normal distribution of normal distributions is shown in 

Figure 10. 

 

2. Origin and Destination Selection 

The selection of origin and destination also depends on the type of demand: commuter, churn, or 

airport transfer.  

 

There are two trips associated with a commuter—the morning commute and the evening 

commute. Each commuter’s morning origin and evening destination are the same vertiport, and 

this vertiport is randomly determined by the port origin weighting during the morning. The 

destination for the morning trip, and therefore the origin for the evening trip, is determined 

randomly by the port destination weighting during the morning commute multiplied by a 

distance weighting function. Vertiports with a high origin weighting tend to be residential areas, 

and vertiports with a high destination weighting tend to be areas with many places of work. The 

distance weighting function takes the form of Equation 1, consisting of four fit parameters, a, b, 

c, and d, and the distance. This has the effect of de-emphasizing very short commute trips and 
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very long commute trips. The effect of the distance weighting function is demonstrated by the 

trip demand distance histogram shown in Figure 11. Because of the stochastic nature of the 

demand generation and the influence of origin/destination weighting, the distribution only 

roughly fits the weighting function, wd, where a is 1/367.8791, b is 0.001, c is 2, and d is 2. 

 

                                          (Eq. 1) 

 

A churn trip origin is generated randomly from all existing vertiports regardless of origin 

weighting. Similarly, the churn trip destination is generated randomly from all existing vertiports 

regardless of destination weighting. 

 

An airport transfer trip will have either an origin or destination at a vertiport collocated with an 

airport. The determination of whether the airport is the trip origin or destination is randomly 

determined, and the probability of the origin or destination being the airport is equal. When there 

is more than one airport, the airport used as the origin or destination is randomly selected from 

all vertiports located at airports. The corresponding origin or destination is then randomly 

selected from all vertiports. For the purposes of the modeling in this paper, the relative ratios of 

these types of trips were assumed as 40 percent commuter, 10 percent churn, and 50 percent 

airport transfer. 

 

 

 

Figure 10. Example normal distribution of normal distributions; each small distribution represents 

the demand for a UAM flight generated by an aircraft arrival or departure from an airport. 
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Figure 11. Trip distances as a result of the demand generation algorithms including the  

distance weighting function. 

 

 

3. Model Limitations 

The demand model depends on the origin and destination weighting to create commuter-based 

morning influx and evening outflow of people to and from city centers. Churn creates random 

trips throughout the day. Airport transfers create airport-focused movement of people in the 

system. The relative number of each type of trip and the specific probability distributions for 

each demand type were selected fairly arbitrarily to demonstrate how the model can be used. As 

this work is refined, hopefully more detailed information will be obtained that can better inform 

the timing probability distributions for each trip type, the origin/destination selection, and the 

relative ratios of the number of each person type. These characteristics will vary for each 

metropolitan area studied. 

D. Dispatch Model 

One of the most important aspects of an on-demand UAM network model is the dispatch model, 

i.e., the model that dictates when an aircraft departs from a vertiport and the destination of the 

trip. This model will ultimately determine two major characteristics of the system: average wait 

time and average load factor (ALF). The average wait time refers to the average amount of time 

a passenger must wait from demand request until the flight departs, considering all flights in the 

network over the course of a day. The ALF is the number of seats filled with paying passengers 

divided by the total number of available seats on all flights throughout the entire network in  

the day.  
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In general, the ALF and average wait time can be traded. For example, for a multi-passenger 

vehicle, the departure of the vehicle could be delayed until a specified number of people are on 

board, which would have the effect of improving ALF at the cost of average wait time. However, 

in this simplistic scenario, it is possible that an insufficient number of passengers may arrive 

during the operating day for the aircraft to depart with the specified number of passengers, which 

could leave certain passengers stranded. Clearly, such a result would be unacceptable. To 

alleviate the issue of stranded passengers and provide a more acceptable means of operation, 

multi-passenger vehicles could delay departure until a specified number of people are on board 

or until the first passenger has been waiting a predefined amount of time. In this second scenario, 

the tradeoff between filling the aircraft with more paying passengers and reducing the first 

passenger’s wait time is clear. Ultimately, if the wait time becomes too large, passengers would 

no longer benefit from a speed advantage by taking the aerial transportation mode, and the UAM 

service would fail. Furthermore, since the DOC per passenger-kilometer is related to ALF, the 

dispatch model can have a major impact on the price the operator would need to charge 

passengers to cover the DOC. The remainder of this section discusses the dispatch model 

employed in the simulations.  
 

1. Dispatch Model Implementation 

The dispatch model is based on heuristics that seek to balance the ALF and average wait time 

across the entire UAM network. The primary assumption of the dispatch model is that trips are 

purely on demand, i.e., there is no prior knowledge of when a trip will be requested, and the 

request is logged when a person arrives at the vertiport. When a trip is logged, a vehicle will be 

immediately dispatched if available and if the vehicle is full.** If the vehicle is not full, then the 

vehicle will wait a maximum of 300 seconds (5 minutes) before being dispatched with a load 

factor of less than 1.0. 

 

In addition, there is a “rebalancing” process that can be initiated to help ensure that aircraft are 

moved between vertiports to best satisfy demand across the entire UAM network. If the demand 

at a particular vertiport exceeds the ability of all “available” aircraft at that vertiport to meet the 

demand, then a rebalancing is initiated. The number of available aircraft is the number of aircraft 

ready at the vertiport plus the number of aircraft in route to that vertiport. Additionally, if the 

number of available aircraft at a vertiport is less than 25 percent of the number of parking spaces 

at the vertiport, then a rebalancing is initiated.  

 

When a rebalancing is initiated, there is an attempt to dispatch a vehicle from the “targeted 

vertiport” to the vertiport initiating the request. A rebalance request will only be successful if the 

number of available aircraft at the targeted vertiport is less than demand at that vertiport. The 

targeted vertiport, which will dispatch a vehicle to the vertiport with the deficit, is selected based 

on its proximity to the vertiport initiating the rebalance request and its type, i.e., if it is a depot 

or not.  

 

For simulations with only battery vehicles, it is assumed that every vertiport has charging 

infrastructure so that there are no depots. In this scenario, the targeted vertiport is initially 

selected as the one closest to the vertiport that initiated the rebalance request. If that vertiport 

cannot provide a vehicle because of high demand, the next closest vertiport then becomes the 

                                                           
**

 One-passenger vehicles dispatch immediately upon the trip being logged. 
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targeted vertiport. If that target vertiport cannot provide a vehicle, the process continues targeting 

vertiports farther and farther from the vertiport with the deficit until the rebalance request is 

satisfied or all possible targeted vertiports have failed to dispatch a vehicle.  

 

For simulations with depot-based replenishing, which in these simulations is the case with all 

fueled vehicles, the first targeted vertiport is selected as the closest depot to the vertiport 

initiating the demand request. If this depot does not have any aircraft it can supply, the next 

targeted vertiport would be the next closest depot. If demand cannot be met by any of the depots, 

then the closest non-depot vertiport is targeted, and the process then continues as in the case 

described previously with no depots.  

 

Finally, in any network with depot-based refueling, consideration of when the vehicles are 

dispatched to the refueling depot is required. Vehicles with fuel below a predefined reserve level, 

which is set at 25 percent for these simulations, are automatically sent to a depot to refuel. 

Additionally, before each potential flight, the estimated fuel usage of completing the proposed 

mission plus then proceeding to the refueling depot nearest to the destination vertiport is 

considered. If this fuel usage would result in the fuel dropping below the reserve level, the 

vehicle is routed directly to the depot closest to the aircraft’s current location instead of 

performing the mission. 
 

2. Model Results 

To study how vehicle design choices impact the ALF and average wait times, UAM network 

simulations were performed with tiltwing/tiltrotor vehicles with different propulsion systems and 

fuel types. Additionally, comparisons of the ALF and average wait times in cases with both 

autonomous and piloted aircraft were performed, and results from all of these simulations are 

described in this section. 

 

The average wait time and ALF results were nearly identical when comparing piloted and 

autonomous tiltwing/tiltrotor vehicles using different power systems. This result is as expected 

since the presence of the pilot only increases the payload of the vehicle, which is then sized using 

the same target mission profile. Therefore, in the remainder of this section, only the results from 

simulations with autonomous vehicles are provided. 

 

Differences are observed, however, between fueled vehicles and battery vehicles as illustrated in 

Figure 12 and Figure 13. Fueled vehicles experience a reduction in ALF and a slight increase in 

the average wait time because of depot-based refueling for fueled vehicles and distributed 

charging for battery vehicles. This is expected because fueled vehicles will occasionally make 

trips with no passengers on board, i.e., “deadhead flights” to a refueling depot. ALF is plotted for 

the autonomous tiltwing/tiltrotor, for each technology and one, two, and four passengers, in 

Figure 12. ALF is observed to decrease with increasing vehicle size because the dispatch model 

attempts to keep the average wait time reasonably low (300-second wait limit). Average wait 

time is plotted for the autonomous tiltwing/tiltrotor, for each technology and one, two, and four 

passengers, in Figure 13. Average wait time increases with increasing vehicle size because the 

vehicle is held until full or until the 300-second wait limit is reached.  
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Figure 12. ALF for autonomous tiltwing/tiltrotor vehicles; variation of power technology. 

 

 

 

Figure 13. Average wait time (sec) for autonomous tiltwing/tiltrotor vehicles; variation of  

power technology. 
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The number of cycles for which the fueled vehicles are sized has an impact on both ALF and the 

average wait time. This is because, generally speaking, sizing an aircraft to fly more missions 

results in fewer deadhead refueling flights during operation. To explore these impacts, 

simulations were performed with one-, two-, and four-passenger autonomous tiltwing/tiltrotor 

aircraft with an internal combustion engine fueled with LNG where the number of cycles in the 

sizing mission was varied. Results of these simulations are provided in Figure 14 for the ALF 

and in Figure 15 for the average wait time. In Figure 14, the ALF is observed to increase with 

increasing number of sizing mission cycles because fewer refueling trips are needed. In Figure 

15, the average wait time is observed to decrease with an increasing number of sizing mission 

cycles. Because of  the reduced number of required fueling flights with increased sizing mission 

cycles, less time is spent waiting for a dispatched rebalancing vehicle to arrive from a depot. 

Beyond 12 cycles there is little change in ALF. 

 

3. Model Limitations 

The current model assumes purely on-demand operations, which would almost certainly not be 

the case in reality. Because trips could be reserved days, hours, minutes, or even just seconds in 

advance, this information could be used by the dispatch model to more strategically position 

aircraft around the UAM network and better satisfy demand. However, a dispatch model that 

considers pre-planned trips is more complex to implement. In practice, a good dispatch model 

would likely represent a competitive economic advantage for potential operators and, therefore, 

the dispatch model would be the subject of extensive development. Ultimately, the results 

presented above from the purely on-demand model likely represent a reasonable lower bound of 

the network performance that could be expected with more intelligent and complex dispatch 

models that may have access to pre-planned trip information. 

 

 
Figure 14. ALF for autonomous tiltwing/tiltrotor vehicles; variation of sizing cycle count. 
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Figure 15. Average wait time (sec) for autonomous tiltwing/tiltrotor vehicles; variation of  

sizing cycle count. 

 

IV. COST AND CARBON EMISSIONS STUDY 

This section describes cost models and estimates the average per-passenger-kilometer costs of 

the various vehicles described in Section II, operating on the UAM network described in Section 

III. These costs are based on an acquisition cost model, an energy cost model, a maintenance cost 

model, and an insurance cost model, all of which are described below. 

A. Cost Model Assumptions 

This section describes the cost models used to estimate the ultimate per-passenger-kilometer 

costs of different notional vehicles operating in the network described above. An acquisition cost 

model by Booz Allen Hamilton [23], an energy cost model based on prices of electricity and 

other fuels [16], a maintenance cost model derived from reference [23], an insurance cost model, 

and a pilot salary model (where applicable), are employed. 
 

1. Acquisition Cost 

Total acquisition cost is modeled as the sum of the cost of the aircraft and the cost of the battery 

sized to that aircraft, whether it is a fully electric aircraft or a hybrid-electric aircraft. Airframe 

acquisition cost is based on a linear fit of aggregated cost estimates of UAM vehicle concepts 

presented in reference [23]. The acquisition cost (excluding battery cost) is related to MTOW as 

shown in Equation 2. 
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             (Eq. 2) 

 

Battery cost is dependent on the design capacity that is output in the vehicle sizing process. 

Vehicle batteries are assumed to be priced at $400/kWh as suggested by Holden and Goel [24]. 

Acquisition price is not explicitly broken out for IC, turbine, or SOFC but is instead assumed to 

be rolled up in Equation 2. Further work is needed on the model to break out these component 

costs. 
 

2. Operating Costs 

The major components of the aircraft operating cost model include vehicle acquisition cost 

amortization, energy cost, maintenance, insurance, battery replacement, and pilot salary 

(assuming piloted vehicles). The vehicle acquisition cost is assumed to be distributed over a  

40-percent initial down payment, followed by yearly payments with an annual interest rate of 

6 percent over a 10-year vehicle lifespan [23]. Energy costs depend on usage as well as the type 

of energy. Energy usage is determined not only by vehicle configuration but also by network 

dynamics: the more efficiently a network operates (i.e., the higher the ALF), the less energy it 

requires. Table 6 contains energy sources employed in the model and their respective costs. In 

this model, it is assumed that only fully battery-powered vehicles require charging; all other 

vehicles are hybrid electric but do not require charging from the electric grid. Batteries are 

assumed to have a 2000-cycle lifetime and an acquisition cost of $400/kWh [3]. 

 

UAM vehicles are assumed to require 1 hour of maintenance per flight hour [26], with a 

maintenance wrap rate (labor plus overhead) of $60 per hour [23]. Based on insurance rates of 

conventional civil helicopters, insurance is estimated to be approximately 3 percent of the 

vehicle acquisition cost per year [23]. To determine pilot costs, it is assumed that pilots receive a 

salary of $50,000 per year, which is comparable to salaries for regional airline pilots; 

additionally, it is stipulated that there be 50 percent more pilots than network vehicles to account 

for shift changes [24]. 

 

Finally, DOC is derived from the aforementioned operating cost factors, as well as average 

network load factor, number of seats per vehicle, average trip length, and an assumed 250 days 

of operation per calendar year for each vehicle.†† DOC is an excellent indicator of the overall 

feasibility of UAM vehicles and operations since it will partially drive ticket price. 

 

Table 6. Energy Costs Rates 

Energy Type Cost 

Electricity $0.036/MJ [16] 

LNG $0.019/MJ [16] 

Diesel $0.025/MJ [16] 

CNG $0.018/MJ [25] 

Jet-A $0.031/MJ [16] 

  

                                                           
††

 250 days per year is 4.8 days per week on average. If a vehicle is operated for 8 hours a day, 250 days a year, the 

yearly utilization is 2,000 hours. 
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B. Cost and Carbon Emissions Results 

1. Direct Operating Cost (DOC) 

Using the previously described cost model and network operations model, the DOC was 

estimated for tiltrotor/tiltwing vehicles. Recall that the network operations were modeled with 

electric aircraft that were sized to a single mission with 20 minutes of cruise and can recharge at 

every vertiport, while the fueled vehicles refuel at a centralized refueling depot and were sized to 

perform eight flight cycles each with a 20-minute cruise segment. Additionally, the ALFs 

presented in Section III.D.2 are used in the DOC calculations, which is an important point to aid 

in understanding some of the more counterintuitive results shown below. The tiltrotor/tiltwing 

configuration was selected based on comparisons of acquisition cost, which indicated that this 

configuration could result in the lowest acquisition cost vehicles. Similarly, only variants of the 

tiltrotor/tiltwing aircraft with battery, LNG, and diesel fuel were evaluated as the studies above 

indicate that these energy storage types have the lowest cost and/or the lowest CO2 emissions.  

 

Figure 16 shows the DOC in $/(pax*km) and $/(pax*mi) for one-, two-, and four-passenger 

vehicles with a pilot, for current battery technology, future battery technology (which is 1.5 

times the current specific energy), LNG w/IC, LNG w/turbine, diesel IC, and diesel turbine. 

Diesel/IC and LNG/IC are relatively close in cost. All of the hybrid configurations have lower 

DOC than current batteries (when compared at the same passenger size) even though they have 

more deadhead flights to refuel at the central depot (i.e., they have a lower ALF). Additionally, 

most hybrid configurations also have a lower DOC than the 1.5x battery case. The lowest DOC 

is an IC engine with LNG across all passenger sizes. 

 

The estimated DOC for autonomous vehicles is shown in Figure 17. Estimated DOC is 

significantly less for the autonomous system than for the piloted vehicles, as can be observed by 

comparing Figure 16 and Figure 17, for several reasons. First, the pilot salary is zero in the 

autonomous case. Second, the vehicle has one less seat and is, therefore, smaller, which results in 

lower acquisition, insurance, and energy costs. Note that the cost of the autonomous system itself 

is not included in the difference in vehicle acquisition cost, so the numbers presented in  

Figure 17 may be lower than would be expected in practice. Also, the insurance rate will likely 

be different for the autonomous aircraft, assuming lower accident rates, but this is also not 

included. 

 

The number of flight cycles used to size the hybrid system was also considered, and the DOC 

estimates when varying the number of cycles is shown in Figure 18. Since the LNG/IC system 

showed the lowest DOC for all systems and the lowest CO2 emissions among hybrid systems, the 

impact of the number of sizing cycles was evaluated using the LNG/IC option only. 

Approximately 8 to 10 flight cycles appear to be optimal from a DOC standpoint, which is due to 

two competing effects. First, the ALF tends to increase as the number of cycles increases, which 

reduces the DOC. However, the weight of the vehicle increases as the number of cycles used to 

size the vehicle increases, which causes more fuel to be used and thus an increase in DOC. The 

precise number of cycles that minimizes the DOC will likely vary for each particular network 

and dispatch model. 

  



25 

 

Figure 16. Piloted tiltwing/tiltrotor UAM vehicle DOC for one, two, and four passengers  

with different technologies. 

 

 

 

 

Figure 17. Autonomous tiltwing/tiltrotor UAM vehicle DOC for one, two, and four passengers  

with different technologies. 
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Figure 18. Autonomous tiltwing/tiltrotor vehicle DOC for one, two, and four passengers with  

LNG/IC for different number of sizing flight cycles; batteries are both 1 cycle. 

 

 

Variations of the technology level, i.e., the specific power, of the SOFC were also explored to 

determine the technology level at which the SOFC might become comparable to batteries and IC 
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estimates for autonomous tiltrotor/tiltwing aircraft are shown in Figure 19. It should be noted 
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Figure 19. Autonomous tiltwing/tiltrotor vehicle DOC for one, two, and four passengers for  

different SOFC technology levels. 

 

 

 

 

Figure 20. Piloted tiltwing/tiltrotor UAM vehicle CO2 for one, two, and four passengers with  

different technologies. 
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Figure 21. Autonomous tiltwing/tiltrotor UAM vehicle CO2 for one, two, and four passengers 

with different technologies. 

 

 

Figure 22. Autonomous tiltwing/tiltrotor vehicle CO2 for one, two, and four passengers for 

different number of sizing flight cycles; batteries are both 1 cycle and the fuel is LNG. 
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Figure 23. Autonomous tiltwing/tiltrotor vehicle CO2 for one, two, and four passengers for  

different SOFC technology levels. 

 

 

In Figure 23, the CO2 g/(pax*km) is presented for different technology levels of SOFC. SOFC 

with LNG is shown to be immediately competitive, on a CO2 basis, with current battery 

technology. Improvements to SOFC specific power result in reduced CO2 emissions. The electric 

grid can also improve over time with investments in renewable energy so long-term batteries will 

also have a reduced carbon footprint. Renewable LNG and renewables with batteries appear to 

be the best routes to carbon emissions reduction. 
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designs has potential advantages and should, therefore, be explored in greater detail. The 
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Figure 24. CO2 emissions plotted against DOC for a variety of technologies. 

 

 

V. FUTURE WORK 

A. Vehicle Modeling 

Preliminary estimates of vehicle characteristics needed to operate the network model in this 

paper were derived from simplified assumptions for the vehicle modeling. This is an initial 

estimate meant to capture top-level performance. Higher fidelity codes would be needed to more 

accurately assess the actual power loading of different vehicle types and the structural weight 

fraction, both of which were estimated in this work. Higher fidelity estimates could then be fed 

into this code to maintain fast execution of the network model. 

B. Network Modeling 

Network modeling is needed to make reasonable estimates of parameters such as ALF that will 

contribute in a significant way to the estimates of DOC and ultimately ticket price. Ticket price 

will play a large role in market acceptance and viability of UAM for passenger transport. The 

work presented here begins to evaluate the impact of various vehicle selection decisions such as 

vehicle type, power source, passenger count, autonomous operation, and sizing mission on DOC. 



31 

More modeling is needed to increase fidelity and to incorporate more effects in the network and 

cost modeling. Also, the dispatch model needs to be looked at in more depth. An optimal 

dispatch model would be able to handle both on-demand and scheduled flights and be optimized 

to work with the type or types of vehicles in the UAM network. 

C. Cost Modeling 

Future development of the UAM cost model necessitates an estimate for network infrastructure 

costs, including vertiport construction, high-voltage chargers and/or refueling stations, vertiport 

maintenance, ground crew salaries and training expenses, landing and parking fees, etc. Vertiport 

construction and charger costs are of particular interest because they will contribute significantly 

to the ticket price early on in the establishment of a UAM network, and may determine the 

ultimate feasibility of UAM operations. If the initial infrastructure costs are sufficiently high, 

they could prevent the establishment of a UAM network altogether.  

VI. SUMMARY AND CONCLUSIONS 

The exploratory modeling in this paper has demonstrated that the decisions operators make about 

how aircraft are dispatched around the network will have large impacts on UAM aircraft 

operating costs. For purely on-demand operations, it is difficult to operate multi-passenger 

vehicles in a way that will both maximize the number of paying passengers on board each flight 

and minimize the amount of time passengers must wait prior to flight departure. For operators to 

maximize the efficiency of their networks, strategies such as demand-based pricing and allowing 

or encouraging booking in advance may enable higher-efficiency networks to be realized in 

practice, which can lead to reduced DOCs. Additionally, the implementation of a dispatch model 

in this study has indicated the counterintuitive result that vehicle DOC may noticeably increase 

as the number of passenger seats increases when operated in a purely on-demand UAM network 

because of the reduced overall ALF. 

 

Based on high-level assumptions of vehicle characteristics, which were based on the UAM 

literature, the modeling herein indicates that tiltrotor/tiltwing-type vehicles are likely the most 

appropriate for UAM aircraft regardless of propulsion system type. If battery vehicles are 

desired, lift-plus-cruise-type vehicles may also be appropriate, but multirotors and side-by-side 

helicopter configurations are not likely to result in practical vehicles. It should be noted that if a 

designer can find ways to make more efficient versions of the configurations studied in this 

paper, then these generalizations may no longer be valid. 

 

When comparing different propulsion systems in pure-electric and hybrid-electric vehicle types, 

internal combustion engines provide the lowest DOC option when compared with battery-only, 

turbines, and SOFCs. The use of LNG as a fuel also has the potential to result in vehicles with 

lower costs than those using diesel or Jet-A fuel.  

 

Battery vehicles offer the lowest carbon emissions when assuming the California grid; 

additionally, battery vehicles could have substantially lower emissions if the electric grid from 

which they are charged emits less carbon.   
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Near-term SOFC technologies (at 350 W/kg) with LNG fuel offer the potential to balance DOC 

and CO2 emissions when compared to IC engines and batteries. Specifically, the LNG/SOFC 

system may provide lower DOC with only slightly higher emissions than future battery solutions 

on the order of 430 Wh/kg. Additionally, LNG/SOFC systems can result in lower CO2 emissions 

than IC engine solutions, but slightly higher DOC. 
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