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ABSTRACT

Hexahedral elements can be subdivided anisotrop-
ically without mesh quality problems that are associ-
ated with tetrahedral meshes. Furthermore, hexahe-
dral meshes yield more accurate solutions than their
tetrahedral counterparts for the same number of edges.
Our adaption procedure uses an edge data structure
that facilitates efficient subdivision by allowing indi-
vidual edges to be marked for refinement or coarsen-
ing. Pyramids and prisms are used as buffer elements
between refined and unrefined hexahedra to eliminate
hanging vertices. Preliminary results indicate that this
new adaption procedure is a viable alternative to adap-
tive tetrahedral schemes.

INTRODUCTION

Anisotropic mesh adaption is a powerful tool
for computing steady and unsteady three-dimensional
problems that require local grid modifications in or-
der to efficiently resolve solution features. A num-
ber of such methods have recently been successfully
developed for local refinement and coarsening of un-
structured tetrahedral meshes [1-3]. However, repeated
anisotropic subdivision can significantly deteriorate the
quality of a tetrahedral mesh. Previous work has
demonstrated that isotropic subdivision is required if
mesh quality is to be controlled effectively for arbitrary
refinement levels in tetrahedral meshes. This is a se-
rious limitation when directional flowfield features are
present, leading to an inefficient distribution of grid
points in the final mesh. In addition, truly anisotropic
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subdivision is almost impossible to realize for real prob-
lems on tetrahedral meshes.

This work builds on the tetrahedral adaption
scheme described in [3] and extends the method to un-
structured hexahedral meshes. Hexahedral elements
are much better suited for anisotropic adaption than
their tetrahedral counterparts. Furthermore, they also
yield more accurate flowfield solutions for the same
number of edges in the mesh.

The remainder of this paper is divided into five sec-
tions. The first section briefly describes the edge-based
tetrahedral adaption procedure in [3]. The next section
highlights the limitations of tetrahedral mesh adaption
schemes. The third section presents our extension to
hexahedral meshes. The hexahedral adaption scheme
shares much of the logic and data structure with the
tetrahedral procedure. It, therefore, also shares much
of the software. The fourth section contains some pre-
liminary results that describe the current status of the
work. Finally, the last section presents improvements
that are being made to the basic hexahedral adaption
scheme to reduce the excessive amount of propagation
that sometimes occur.

EDGE-BASED TETRAHEDRAL ADAPTION
SCHEME

Biswas and Strawn [3] describe the tetrahedral
mesh adaption scheme, called 3D_TAG, that 1s used
as a framework for the new hexahedral mesh adaption
procedure. The 3D_TAG code has its data structure
based on edges that connect the vertices of a tetrahe-
dral mesh. This means that each tetrahedral element is
defined by its six edges rather than by its four vertices.
This edge data structure makes the mesh adaption com-
patible with Barth’s Euler solver [4] as well as facilitates
efficient refinement and coarsening. A successful data
structure must contain just the right amount of infor-
mation so as to rapidly reconstruct the mesh connec-
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Figure 1: Final mesh and computed pressure contours in the plane of the rotor for a tip Mach number of 0.95.

tivity when vertices are added or deleted but also have
a reasonable memory requirement.

At each mesh adaption step, individual edges are
marked for coarsening, refinement, or no change. Only
three subdivision types are allowed for each tetrahedral
element. The 1:8 isotropic subdivision is implemented
by adding a new vertex at the mid-point of each of the
six edges. The 1:4 and 1:2 subdivisions are used in
two ways. First, they can result because the edges of
a parent tetrahedron are targeted anisotropically. Sec-
ond, they are used as buffers between the refined ele-
ments and the surrounding coarser grid. These buffer
elements are required to form a valid connectivity for
the new mesh so that there are no “hanging” vertices.

Mesh refinement is performed by first setting a bit
flag to one for each edge that is targeted for subdivision.
The edge markings for each element are then combined
to form a binary pattern. Elements are continuously
upgraded to valid patterns corresponding to the three
allowed subdivision types until none of the edge pat-
terns show any change. Once this edge-marking is com-
pleted, each element is independently subdivided based
on its binary pattern. Special data structures are used
in order to ensure that this process is computationally
efficient.

Mesh coarsening is also performed using the edge-
marking patterns. If a child element has any edge
marked for coarsening, this element and its siblings are
removed and their parent element is reinstated. The
parent edges and elements are retained at each refine-
ment step so they do not have to be reconstructed. Re-
instated parent elements have their edge-marking pat-

terns adjusted to reflect that some edges have been
coarsened. The parents are then subdivided based on
their new patterns. As a result, the coarsening and
refinement procedures share much of the same logic.

A significant feature of this adaption scheme is us-
ing the concept of “sublists.” A data structure is main-
tained where each vertex has a sublist of all the edges
that are incident upon it. Also, each edge has a sublist
of all the elements that share it. These sublists elimi-
nate extensive searches and are crucial to the efficiency
of the overall adaption scheme.

In [3], the data structure was implemented in C
as a series of dynamically-allocated linked lists. This
facilitated the addition and deletion of mesh points, but
the linked lists made it very difficult to pass information
directly to the Fortran flow solver. In order to reduce
the communication overhead, the linked lists have been
replaced with arrays and a garbage collection algorithm
is used to compact free space when mesh points are
removed.

This mesh adaption scheme and flow solver have
been used to successfully model large problems in he-
licopter aerodynamics and aeroacoustics [6,7]. An ex-
ample of such calculations is shown in Fig. 1. This
figure shows the adapted mesh and solution for a high-
speed hovering rotor blade. Here, the mesh adapts to
resolve the leading edge compression, the surface shock,
and the acoustic wave that propagates to the far field.
Computed results show excellent agreement with exper-
imental data for both near and far-field acoustic pres-
sures.



LIMITATIONS OF TETRAHEDRAL
SCHEME

One of the problems with anisotropic subdivision
of tetrahedral meshes 1s that repeated refinement can
lead to poor mesh quality. Poor mesh quality is de-
fined as a grid deficiency that leads to an inaccurate
flowfield solution. Poor meshes can have disparate ele-
ment sizes, large face angles, and high vertex degrees.
This issue was addressed in [5], where it was concluded
that isotropic refinement is required if mesh quality is to
be controlled effectively for arbitrary refinement levels.
This is a serious limitation when directional flowfield
features are present, leading to an inefficient distribu-
tion of grid points in the final mesh.

A remedy for this problem is to use hexahedral
meshes, which do not have these element quality prob-
lems. This is because a hexahedron can be subdivided
anisotropically in any of the three directions and yield
child elements whose face angles are similar to their
parent. This ability to anisotropically refine the mesh
makes a tremendous difference in the final problem size
when directional flow features are present.

Hexahedral meshes also have an advantage in that
they yield more accurate flowfield solutions than their
tetrahedral counterparts for the same number of edges.
Aftosmis et al. [8] have shown that tetrahedral grids re-
quire approximately double the storage and CPU time
than hexahedral tessellations of the same vertices. This
is due to the fact that tetrahedral meshes have more
edges. These additional edges, however, do not con-
tribute significantly to an improvement in solution ac-
curacy.

One disadvantage with unstructured hexahedral
grids, however, is that grid generation i1s not as ad-
vanced as that for tetrahedral meshes. Some of this is
due to the fact that this area has not received much
attention till date. We realize that grid generation for
hexahedral meshes is an important issue, but feel that
the advantages of hexahedral mesh adaption offset the
current lack of highly-developed grid generation tools.
We have therefore used structured hexahedral grids as
our initial meshes for the test problems reported in this
paper.

HEXAHEDRAL ADAPTION SCHEME

Our new hexahedral adaption scheme uses the
same basic data structure and the binary edge-marking
strategy as the tetrahedral scheme. Instead of a tetra-
hedral element being defined by its six edges, a hex-
ahedral element is defined by its twelve edges. These
edges are ordered in a particular manner such that the
binary pattern of marked edges in each element deter-
mines how it will be refined. However, the fact that

there are twelve edges per hexahedron does not mean
that there are 2% different ways that an element can
be subdivided! The twelve edges are grouped into three
sets where each set consists of the four edges that are
disjoint from one another. By handling each group of
edges in succession, the total number of different ways
an element can be refined is reduced to only 10 distinct
cases.

Coarsening of hexahedral elements is also per-
formed using the edge-marking patterns. As in the
tetrahedral scheme, if a child hexahedron has any of
its edges marked for coarsening, this element and its
siblings are removed and their parent element is rein-
stated. The edge-marking patterns for these reinstated
parents are adjusted to reflect that some edges have
been coarsened. The parents are then subdivided based
on their new patterns. As was the case for the tetra-
hedral adaption scheme, the coarsening and refinement
steps share much of the same logic. In fact, the hex-
ahedral and tetrahedral schemes are so similar, that
approximately 80% of the software is shared between
the two methods.

Hexahedral adaption schemes generate “hanging”
vertices when a hexahedron cannot be split into smaller
hexahedra without continuously propagating the mesh
refinement into regions where it is not desired. We
solve this hanging-vertex problem by using other ele-
ment types as buffers between refined and unrefined el-
ements. In particular, pyramids and prisms are used to
connect up the hanging vertices without unnecessarily
propagating the grid refinement. These pyramids and
prisms are never subdivided however. If an edge of a
pyramid or a prism is marked for subdivision, then the
element and its siblings revert back to their parent hex-
ahedron and further refinement is performed directly on
the hexahedral element itself. The basic logic for this
treatment of buffer elements is identical to the scheme
for tetrahedra that is described in [5] when the mesh
quality option 1s turned on.

Sketches of the various types of allowed hexahedral
element subdivisions are shown in Fig. 2. The refine-
ment patterns in the top row occur when all four edges
in any one or more of the three sets are bisected. This
splits the original hexahedron into two, four, or eight
smaller hexahedra. Note that all the four disjoint edges
in a set are also bisected even if only three edges are
marked for refinement. Similar action is taken if two
opposite edges in a set are marked.

At most one of the three sets can be marked non-
uniformly; that is, only one set is allowed to have one
edge or two adjacent edges marked for refinement. The
non-uniformly marked set with only one bisected edge
generates buffer pyramid elements and these are shown
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Figure 2: Types of subdivision that are permitted for each hexahedral element.

in the middle row of Fig. 2. Since there is only one set
that has exactly one bisected edge, either the parent
hexahedron or only one of its children is split into four
pyramids.

The non-uniformly marked set with two adjacent
bisected edges generates buffer prism elements and
these are shown in the bottom row of Fig. 2. Depending
on the actual marking pattern, either the parent hexa-
hedron or at most two of its children are split into three
prisms each. As mentioned earlier, the prisms and pyra-
mids are never subdivided. They revert to their parent
hexahedra if additional subdivision is required.

The Euler flow solver that is used with the result-
ing mixed-element meshes was developed by Barth [4].
This finite-volume upwind code solves for solution vari-
ables at the vertices of the mesh and satisfies the inte-
gral conservation laws on non-overlapping polyhedral
control volumes surrounding these vertices. Improved
accuracy 1s achieved by using a piecewise linear recon-
struction of the solution in each control volume. Com-
putation of the fluxes across each face of the control

volume is carried out by summing the contributions
from each edge in the mesh. These edges can make up
arbitrary polyhedral elements. This means that flow-
fields on mixed element meshes can be solved just as
easily as those on purely tetrahedral grids.

COMPUTED RESULTS

The new hexahedral mesh adaption procedure has
been applied to a pair of subsonic and transonic flow
problems. Even though both these cases represent
steady-state problems, this algorithm is applicable to
unsteady flows as well. Steady-flow examples have been
chosen as the simplest test cases that fully exercise all
aspects of the new mesh refinement/coarsening scheme
in three dimensions.

Both test problems consider a NACA 0012 wing
that is mounted between two inviscid sidewalls. This
is shown in the left portion of Fig. 3. The advantage
of these cases is that although the problems are three-
dimensional, the results can be easily visualized along



LTI
S

sy
e

i
AN
S
e !
e
STt

- o

L N %ﬁlglﬂﬁﬁvﬂnll

WI"‘;’"’";III R 7t {Hﬂwﬁ‘“ =S5
oA =

i

s o T !
gLt Uiy il
"'I’"';lm"',',','ﬂﬂ’ﬁ"ﬁ‘lﬂii i)

/
W
11 i

Figure 4: Two mesh adaption stages for the inviscid NACA 0012 wing, M., = 0.5, a = 3°.
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the sidewalls and compared to existing high-resolution either on the top or the bottom surface of the airfoil.
two-dimensional computations. Figure 4 shows the sequence of mesh refinement
The initial three-dimensional computational mesh and coarsening steps for this problem. The absolute
was created from two structured C-H meshes placed difference in density across each edge of the mesh was
one chordlength apart in the spanwise direction. The used as the adaption indicator. The first mesh refine-
initial mesh consisted of 4,006 points and 1,900 hexa- ment marked 4,084 edges for refinement. This resulted
hedral elements. A total of 69 points were located on in the addition of 5,382 points and 14,179 edges to the
the surface of the wing at each two-dimensional plane. mesh. An additional coarsening and refinement step
The outer computational boundaries were located at was then performed. We targeted 5,048 edges for coars-
approximately 20 chords above and below the wing. A ening and 4,984 edges for refinement. These values
view of the initial mesh along a sidewall 1s shown in the were chosen only to obtain a reasonable solution for
right portion of Fig. 3. the problem. No attempt was made to optimize the
Flow conditions for the first test problem were a adapted mesh for efficiency or the accuracy of the final
free-stream Mach number of 0.5 and a three-degree an- computed results.
gle of attack. This subsonic case features no shocks The flow solver was run for approximately 500 it-



erations on each intermediate mesh. The fact that an
adapted mesh starts out with the interpolated coarse-
grid solution means that it converges rapidly for steady-
state calculations, even on fine meshes.

Initial First Second

Mesh  Adaption Adaption
Points 4,006 9,388 14,056
Edges 9,809 23,988 36,756
Hex elements 1,900 4,161 5 841
Pyr elements 0 0 0
Prm elements 0 792 1,995
Quad bdy faces 4,006 8,596 12,061
Tri1 bdy faces 0 1,584 3,990

Table 1: Measures of problem size for My, = 0.5,
a=3°.

Table 1 lists the number of points, edges, elements,
and boundary faces for the initial and the two adapted
meshes. Note that there is a very high percentage of
boundary faces because of the way the problem has
been set up. Every point in the initial mesh is a bound-
ary point. One other interesting feature is that there
are no pyramid elements in the adapted meshes. This is
due to the fact that this is essentially a two-dimensional
problem that has been set up in three dimensions in or-
der to compare the results with existing, high-quality
structured-grid solutions.

N

Figure 5: Computed pressure contours at the sidewalls
for the solution-adaptive inviscid wing mesh, M., =

0.5, « = 3°.

Pressure contours for this case are shown in Fig. 5.
The stagnation point at the leading edge is captured
with high resolution. Results for the computed pressure
coefficient on the final mesh are presented in Fig. 6.
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Figure 6: Computed surface pressures for the solution-
adaptive inviscid wing mesh, M., = 0.5, o = 3°.

Flow conditions for the second test problem using
the same wing configuration were a free-stream Mach
number of 0.85 and a one-degree angle of attack. Fig-
ure 7 shows two mesh adaption steps for this problem.
Approximately 4,000 edges were targeted for refinement
the first time. A total of 5,038 edges were then coars-
ened and 4,972 edges were refined. This increased the
mesh size to 14,120 points, 36,886 edges, 5,942 hexahe-
dral elements, and 1,911 buffer prism elements.

There is a lack of smoothness in the final mesh
resulting from the anisotropic mesh refinement and
the fact that relatively few mesh points are used. A
smoother mesh can be realized by adjusting the error
indicator and/or adding more points to the grid. Ad-
ditional coarsening and refinement steps can provide
a more efficient distribution of points. More effective
adaption indicators can also help to smooth out the
mesh and target flow regions near the trailing edge.

Pressure contours for this case are shown in Fig. 8.
These contours show good resolution of the shock on
the upper surface out to the far field. Additional mesh
adaption steps will help to sharpen up the shock on
the lower surface. Results for the computed pressure
coefficient on the final mesh are presented in Fig. 9.
These computed results are compared to the AGARD
Fuler solution No. 9 taken from [9]. Their structured-
grid solution used an O-mesh consisting of 320 points on
the airfoil surface and 64 points normal to the surface.
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Figure 7: Two mesh adaption stages for the inviscid NACA 0012 wing, Mo, = 0.85, o = 1°.

Figure 8: Computed pressure contours at the sidewalls
for the solution-adaptive inviscid wing mesh, M., =

0.85, a = 1°.

The outer computational boundary was located 25
chords from the airfoil surface. The results in Fig. 9
show excellent agreement between the two solutions.
We expect that the slight difference in the shock lo-
cation on the lower surface will disappear with a bet-
ter error indicator and more levels of adaption. The
purpose of this test case is to show that the solution-
adaptive unstructured hexahedral grid calculation has
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Figure 9: Computed surface pressures from the

solution-adaptive unstructured-grid scheme are com-
pared to those from a structured-grid method.

a more efficient mesh distribution than its structured-
grid counterpart.

IMPROVEMENTS TO BASIC
HEXAHEDRAL SCHEME

One serious problem with this hexahedral adap-
tion scheme is the phenomenon of excessive propaga-
tion. As mentioned earlier, at most one of the three sets
of edges can be marked non-uniformly. This restriction



requires that elements be continuously upgraded if they
have more than one set of edges that are marked non-
uniformly. This causes mesh refinement to be propa-
gated into regions where 1t is not desired.

Figure 10 depicts a scenario where the refinement
is propagated because the element edge-markings need
to be upgraded to allowable patterns. The top row
shows three contiguous elements. The leftmost element
has two edges marked for refinement, while the remain-
ing two elements each have only one edge marked. Since
only one set of edges can be marked non-uniformly, the
leftmost element must have all four edges in one of the
two sets marked. This is shown in the second row.
However, using the same argument as before, the mid-
dle element must now be upgraded. This is shown in
the third row. At the next iteration, the rightmost ele-
ment will have to be upgraded. It is thus obvious that
the refinement is being propagated unnecessarily due
to the restriction that we have imposed.
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Figure 10: Schematic showing the problem of refine-
ment propagation in one direction.

We solve this problem by removing this restriction
altogether. We first refine only those hexahedral ele-

ments that will generate smaller hexahedra as dictated
by their edge-marking patterns. Any partially-marked
element is not upgraded but instead have a new ver-
tex inserted at its center. This center vertex is then
joined by edges to the eight vertices of the hexahedron,
thereby creating six pyramids as shown in Fig. 11.

Figure 11: Six pyramid elements are initially created
by inserting a vertex at the center of a hexahedron.

Each of these six pyramids are then examined se-
quentially. Each pyramid has a face of the original hex-
ahedron as its base. The four edges that constitute the
face can have one of six distinct refinement patterns.
This causes the special subdivisions that are shown in
Fig. 12. If none of the edges on the face are marked,
we stay with the one pyramid element. If only one
edge 1s marked, three tetrahedral elements are gener-
ated. If two adjacent edges are marked, we obtain four
tetrahedral elements. However, if two opposite edges
are marked, then two pyramid buffer elements are cre-
ated. If three edges are marked for refinement, then we
generate one pyramid and three tetrahedral elements.
Finally, if all four face edges are bisected, we obtain
four smaller pyramids.

Insertion of this center vertex obviously eliminates
any possibility of refinement propagation. No addi-
tional edges are marked for subdivision and none of
the neighboring hexahedral elements are affected. The
entire refinement procedure is contained within a single
hexahedron which 1s properly split into a combination
of pyramid and tetrahedral elements to obtain a valid
mesh connectivity.

SUMMARY AND CONCLUSIONS

This paper has presented a new method for the dy-
namic adaption of three-dimensional unstructured hex-
ahedral meshes. The algorithm uses edge-based data
structures in order to allow anisotropic refinement and
coarsening. Pyramids and prisms are used as buffer
elements to interface regions of refined and unrefined
hexahedra.
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Figure 12: Special subdivision types when inserting a vertex at the center of a hexahedron.

The solution-adaptive scheme has been demon-
strated for two sample cases. Computed solutions for
the Euler equations show good agreement with results
from conventional structured-grid methods.

A problem with excessive propagation of the re-
fined region is eliminated by not upgrading the element
edge-marking patterns but instead by inserting a ver-
tex at the center of the hexahedron. The hexahedron
is then locally split into a combination of pyramids and
tetrahedra to generate a valid mesh. This removes the
requirement of having to adjust the refinement strategy
for any neighboring hexahedra.
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